Math, asked by anugulasya31, 4 months ago

Find an, in the function f(x) = x - x3

Answers

Answered by pulakmath007
11

For the function f(x) = x - x³ the value of aₙ = 0

Correct question : Find aₙ for the function f(x) = x - x³

Given :

The function f(x) = x - x³

To find :

The value of aₙ

Solution :

Step 1 of 3 :

Check the function is even or odd

Here the given function is

\displaystyle \sf{  f(x) = x -  {x}^{3} }

Now ,

\displaystyle \sf{  f( - x)    }

\displaystyle \sf{   =  - x -  {( - x)}^{3} }

\displaystyle \sf{  =  - x +  {x}^{3} }

\displaystyle \sf{   =  - (x - {x}^{3})}

\displaystyle \sf{   =  - f(x)   }

So the function f(x) = x - x³ is an odd function

Step 2 of 3 :

Define Fourier Series of a function

For a function f(x) in the interval ( - c, c)

The Fourier series is given by

\displaystyle \sf{ f(x) =  \frac{a_0}{2} + \sum\limits_{n=1}^{  \infty } a_n \: cos \frac{n\pi x}{c} +    \sum\limits_{n=1}^{  \infty }  \: b_n \: sin \frac{n\pi x}{c} }

Where ,

\displaystyle \sf{ a_0 =  \frac{1}{c}  \int\limits_{- c}^{c} f(x)    \, dx  }

\displaystyle \sf{ a_n =  \frac{1}{c}  \int\limits_{- c}^{c} f(x)  \: cos\frac{n\pi x}{c}  \, dx  }

\displaystyle \sf{ b_n =  \frac{1}{c}  \int\limits_{- c}^{c} f(x)  \: sin\frac{n\pi x}{c}  \, dx  }

Step 3 of 3 :

Calculate the value of aₙ

The given function f(x) = x - x³ is an odd function

Thus we get

\displaystyle \sf{ a_0 =  \frac{1}{c}  \int\limits_{- c}^{c} f(x)    \, dx  } = 0

\displaystyle \sf{  \because \:  cos \:  \frac{n \pi x}{c}  \:  \: is  \: an  \: even \:  function }

\displaystyle \sf{  \therefore \:  f(x)cos \:  \frac{n \pi x}{c}  \:  \: is  \: an  \: odd \:  function }

\displaystyle \sf{ \therefore \:  a_n =  \frac{1}{c}  \int\limits_{- c}^{c} f(x)  \: cos\frac{n\pi x}{c}  \, dx  } = 0

Again ,

\displaystyle \sf{  \because \:   sin \:  \frac{n \pi x}{c}  \:  \: is  \: an  \: odd \:  function }

\displaystyle \sf{  \therefore \:  f(x)sin \:  \frac{n \pi x}{c}  \:  \: is  \: an  \: even \:  function }

\displaystyle \sf{  \therefore \: b_n =  \frac{1}{c}  \int\limits_{- c}^{c} f(x)  \: sin\frac{n\pi x}{c}  \, dx  =  \frac{2}{c}  \int\limits_{0}^{c} f(x)  \: sin\frac{n\pi x}{c}  \, dx }

Hence for the function f(x) = x - x³ the value of aₙ = 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. write the expression for gradient and divergence

https://brainly.in/question/32412615

2. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

#SPJ3

Similar questions