Find angular momentum along point O when it reaches at point P
Please answer the question.
Answers
Answer:
Angular Momentum is an axial vector represented as the cross product between position vector and linear momentum vector.
Mathematically, we can say :
Angular momentum = Linear Momentum × ⊥r
Calculation:
Linear momentum at highest point be v
Perpendicular distance :
So, angular momentum at highest point shall be :
So final answer is :
Answer:
Answer:
Angular Momentum is an axial vector represented as the cross product between position vector and linear momentum vector.
Mathematically, we can say :
Angular momentum = Linear Momentum × ⊥r
Calculation:
Linear momentum at highest point be v
\bigstar \: \: P =m \{ u \cos( \theta) \}★P=m{ucos(θ)}
Perpendicular distance :
\bigstar \: \: h_{max} = \dfrac{ {u}^{2} { \sin }^{2} ( \theta) }{2g}★h
max
=
2g
u
2
sin
2
(θ)
So, angular momentum at highest point shall be :
\bigstar \: \: L = P \times (r\perp)★L=P×(r⊥)
\implies \: L = m \{u \cos( \theta) \} \times \{ \dfrac{ {u}^{2} { \sin}^{2}( \theta) }{2g} \}⟹L=m{ucos(θ)}×{
2g
u
2
sin
2
(θ)
}
\implies \: L = \dfrac{m {u}^{3} { \sin}^{2}( \theta) \cos( \theta) }{2g}⟹L=
2g
mu
3
sin
2
(θ)cos(θ)
So final answer is :
\boxed{ \red{ \huge{ \bold{ \: L = \dfrac{m {u}^{3} { \sin}^{2}( \theta) \cos( \theta) }{2g} }}}}
L=
2g
mu
3
sin
2
(θ)cos(θ)