Physics, asked by bhargavi1214, 10 months ago

Find angular momentum along point O when it reaches at point P
Please answer the question.​

Attachments:

Answers

Answered by nirman95
0

Answer:

Angular Momentum is an axial vector represented as the cross product between position vector and linear momentum vector.

Mathematically, we can say :

Angular momentum = Linear Momentum × ⊥r

Calculation:

Linear momentum at highest point be v

  \bigstar \:  \: P  =m \{ u \cos( \theta)  \}

Perpendicular distance :

 \bigstar \:  \: h_{max} =  \dfrac{ {u}^{2} { \sin }^{2} ( \theta) }{2g}

So, angular momentum at highest point shall be :

 \bigstar \:  \: L = P \times (r\perp)

 \implies \: L = m \{u \cos( \theta) \}  \times  \{ \dfrac{ {u}^{2} { \sin}^{2}( \theta)  }{2g}  \}

 \implies \: L =  \dfrac{m {u}^{3} { \sin}^{2}( \theta) \cos( \theta)   }{2g}

So final answer is :

 \boxed{ \red{ \huge{ \bold{ \: L =  \dfrac{m {u}^{3} { \sin}^{2}( \theta) \cos( \theta)   }{2g}  }}}}

Answered by Anonymous
1

Answer:

Answer:

Angular Momentum is an axial vector represented as the cross product between position vector and linear momentum vector.

Mathematically, we can say :

Angular momentum = Linear Momentum × ⊥r

Calculation:

Linear momentum at highest point be v

\bigstar \: \: P =m \{ u \cos( \theta) \}★P=m{ucos(θ)}

Perpendicular distance :

\bigstar \: \: h_{max} = \dfrac{ {u}^{2} { \sin }^{2} ( \theta) }{2g}★h

max

=

2g

u

2

sin

2

(θ)

So, angular momentum at highest point shall be :

\bigstar \: \: L = P \times (r\perp)★L=P×(r⊥)

\implies \: L = m \{u \cos( \theta) \} \times \{ \dfrac{ {u}^{2} { \sin}^{2}( \theta) }{2g} \}⟹L=m{ucos(θ)}×{

2g

u

2

sin

2

(θ)

}

\implies \: L = \dfrac{m {u}^{3} { \sin}^{2}( \theta) \cos( \theta) }{2g}⟹L=

2g

mu

3

sin

2

(θ)cos(θ)

So final answer is :

\boxed{ \red{ \huge{ \bold{ \: L = \dfrac{m {u}^{3} { \sin}^{2}( \theta) \cos( \theta) }{2g} }}}}

L=

2g

mu

3

sin

2

(θ)cos(θ)

Similar questions