Math, asked by ramamurthyreddy, 9 months ago

find answer of this​

Attachments:

Answers

Answered by tiwari15harshit
0

Answer:

 \sqrt{a^{2} +  b^{2} - c^{2} }

Step-by-step explanation:

a \cos( \alpha )  - b \sin( \alpha )  = c \:  \:  \:  \:  \: ....(1)

Let,

a \sin( \alpha )  + b \cos( \alpha )  = x \:  \:  \:  \:  \:  \:  \:  \:...(2)

Divide both sides of the equation 1 and 2 by

 \sqrt{a^{2} + b^{2}  }

Now let

 \frac{a}{ \sqrt{a^{2} + b^{2}  } } =  \cos( \beta )

So the equation 1 becomes

 \cos( \alpha )  \cos( \beta ) -  \sin( \alpha )   \sin( \beta )  =  \frac{c}{ \sqrt{a^{2} + b^{2}  } }

 \cos( \alpha   + \beta )  =  \frac{c}{ \sqrt{a^{2} + b^{2}  } }

 \sin( \alpha  +  \beta )  =  \sqrt{ \frac{a^{2} + b^{2} -c^{2}   }{a^{2} + b^{2}  } }

Also Equation 2 becomes

x =  \sin( \alpha  +  \beta )  \times  \sqrt{a^{2} + b^{2} }

therefore

x =  \sqrt{a^{2} + b^{2} - c^{2}  }

Similar questions