Math, asked by razeltarun007, 6 months ago

find antiderivative of:
 \sqrt{x}
+1/
 \sqrt{x}

Answers

Answered by Anonymous
6

Solution:-

 \rm \:  \to \int \bigg( \sqrt{x}  +  \dfrac{1}{ \sqrt{x} }  \bigg)dx

 \rm \:  \to \int \bigg( {x}^{ \frac{1}{2} }  +  \dfrac{1}{ {x}^{ \frac{1}{2} }  }  \bigg)dx

Using this properties

 \rm \implies \:  \int \{f(x) + g(x) \}dx =  \int  f(x)dx +  \int g(x)dx

We get

 \to \rm \:  \int( {x}^{ \frac{1}{2} } )dx +  \int ({x}^{\frac{ - 1}{2}} )dx

 \rm \:  \to \:  \dfrac{ {x}^{ \frac{1}{2} + 1 } }{ \dfrac{1}{2} + 1 }  +  \dfrac{ {x}^{ \frac{ - 1}{2} + 1 } }{  - \dfrac{ 1}{2} + 1 }   + c

 \rm \:  \to \:  \dfrac{x {}^{ \frac{1 + 2}{2} } }{ \dfrac{1 + 2}{2} }  +  \dfrac{x {}^{ \frac{ - 1 + 2}{2} } }{ \dfrac{ - 1 + 2}{2} }  + c

  \to \rm \:  \dfrac{x {}^{ \frac{3}{2} } }{ \dfrac{3}{2} }  +  \dfrac{x {}^{ \frac{1}{2} } }{ \dfrac{1}{2} }  + c

 \rm \to \:  \dfrac{2x {}^{ \frac{3}{2} } }{3}  +  \dfrac{2x {}^{ \frac{1}{2} } }{1}  + c

Answer

\rm \to \:  \dfrac{2x {}^{ \frac{3}{2} } }{3}  +  \dfrac{2x {}^{ \frac{1}{2} } }{1}  + c

Similar questions