find any positive integer n,prove that n3-n I'd divisible by 6
Answers
Step-by-step explanation: n³ - n = n(n² - 1) = n(n - 1)(n + 1)
n - 1 , n , n + 1 are 3 consecutive integers , so atleast one of them will be divisible by 2 and will be even
Also by the same logic , atleast one number will be divisible by 3
So this number will be divisible by 6 (Proved)
Answer:
n3 – n = n(n2 – 1) = n(n+1)(n – 1) = (n – 1)n(n+1) = product of three consecutive positive integers.
Now, we have to show that the product of three consecutive positive integers is divisible by 6.
We know that any positive integer n is of the form 3q, 3q + 1 or 3q + 2 for some positive integer q.
Now three consecutive positive integers are n, n + 1, n + 2.
Case I. If n = 3q.
n(n + 1) (n + 2) = 3q(3q + 1) (3q + 2)
But we know that the product of two consecutive integers is an even integer.
∴ (3q + 1) (3q + 2) is an even integer, say 2r.
⟹ n(n + 1) (n + 2) = 3q × 2r = 6qr, which is divisible by 6.
Case II. If n = 3n + 1.
∴ n(n + 1) (n + 2) = (3q + 1) (3q + 2) (3q + 3)
= (even number say 2r) (3) (q + 1)
= 6r (q + 1),
which is divisible by 6.
Case III. If n = 3q + 2.
∴ n(n + 1) (n + 2) = (3q + 2) (3q + 3) (3q + 4)
= multiple of 6 for every q
= 6r (say),
which is divisible by 6.
Hence, the product of three consecutive integers is divisible by 6.