find Ap where an=4+5n
Answers
Answered by
3
Step-by-step explanation:
n=a+(n−1)d
4=a+(n−1)2
4=a+2n−2
6=a+2n
∴a=6−2n...(1)
Sn=2n[2a+(n−1)d]
−14=2n[2(6−2n)+(n−1)2]
−28=n[12−4n+2n−2]
−28=12n−2n2−2n
−28=10n−2n2
−14=5n−n2
Solving the above equation, we get,
(n−7)(n+2)=0
n=7,−2
∴n=7
a=6−2n From (1)
a=6−2(7)=−8
Similar questions