Math, asked by bhatt15, 9 months ago

find ap whose nth term is given by an=9-5n.Find sum of first n terms of ap

Answers

Answered by sonal1305
7

{\huge{\underline{\sf {\pink{Answer ;}}}}}

AP = 4, -1, -6, ......... (9 - 5n)

{S}_{n} =  \frac{n}{2} (13 - 5n)

{\huge{\underline{\sf {\orange{Explanation :}}}}}

Let,

First term be a

Last term be {a}_{n}

Common difference be d

Sum of n terms be {S}_{n}

 \:  \:  \:  \:

{\huge{\underline{\sf {\purple{Formula \: used :}}}}}

{a}_{n} = a + (n - 1)d

{S}_{n} =  \frac{n}{2} \: 2a + (n - 1)d

 \:  \:  \:  \:

{\huge{\underline{\sf {\blue{Solution :}}}}}

 \:  \:  \:  \:

A P :

{a}_{n} = 9 -5 n \:  \:  \: (given)

 \:  \:  \:  \:

First term, n = 1

{a}_{1} = 9 - 5(1)   \:  \: \\ = 9 - 5 \\ = 4

 \:  \:  \:  \:

Second term, n = 2

{a}_{2} = 9 - 5(2) \\  = 9 - 10 \\  =  - 1

 \:  \:  \:  \:

Third term, n = 3

{a}_{3} = 9 - 5(3) \\  = 9 - 15 \\   =  - 6

 \:  \:

Common difference

= {a}_{2} - {a}_{1}

= (-1) - 4

= - 5

 \:  \:  \:

AP = 4, -1, -6, ......... (9 - 5n)

 \:  \:  \:

Sum :

{S}_{n} =  \frac{n}{2}  \: 2a + (n - 1)

 \:\:\:\:\:\:=  \frac{n}{2} 2(4) + (n - 1)( - 5)

 \:\:\:\:\:\:=  \frac{n}{2}   8 + (n - 1)( - 5)

 \:\:\:\:\:\:=  \frac{n}{2}  \: (8 - 5n + 5 )

 \:\:\:\:\:\:=  \frac{n}{2}  \: (13 - 5n)

Similar questions