Find approximate value of upto four places of decimals.
Answers
Answered by
2
Solution :
1/4.08
= 100/408
408) 1000( 0.24509
********816
_________
**********1840
**********1632
__________
**********2080
**********2040
___________
**************4000
**************3681
______________
*****************319
Therefore ,
1/4.08 = 0.24509...
≈ 0.2451
••••
1/4.08
= 100/408
408) 1000( 0.24509
********816
_________
**********1840
**********1632
__________
**********2080
**********2040
___________
**************4000
**************3681
______________
*****************319
Therefore ,
1/4.08 = 0.24509...
≈ 0.2451
••••
Answered by
1
Answer:
0.2451
Step-by-step explanation:
Hi,
Consider f(x) = 1/x
f'(x) = -1/x²
Δf(x)/Δx = f(x+h)-f(x)/h
As limit h->0, Δf(x)/Δx = f'(x)
Put x = 4 in the above equation and h = 0.08
f(x + h) = f(4.08) = 1/4.08
= f(x) + h*f'(x), where x = 4
But f'(4) = -1/16 =
f(4.08) = f(4) + (0.08)*(-0.0625)
= 0.25 - 0.005
= 0.245 which is approximated to 3 decimal places
But, we need approximation upto 4 decimal places , so we need to
consider the second order term in taylor's series as well
= h²*f''(x)/2!
f''(x) = 2/x³
f"(4) = 2/64 = 1/32
h²f(x)/2! = 0.08²/64 = 0.0001
Hence, f(x+ h) = f(x) + h*f'(x) + h²f"(x)/2! + O(h³)
Hope, it helps !
1/4.08 = 0.245 + 0.0001
= 0.2451 approximate upto 4 decimal places
Hope, it helps!
Similar questions