Math, asked by Muhsi2749, 1 year ago

Find area of a triangle whose perimeter is 32 cm . One of its side is 11cm and the difference of other two sides is 5cm.

Answers

Answered by TheBrainliestUser
33
Solutions :-


We have,

Perimeter of triangle = 32 cm
One of its side = 11 cm

Let the second side be x
And third side be x + 5


Perimeter of triangle = sum of three sides

A/q

=> 11 + x + x + 5 = 32
=> 2x = 32 - 16
=> 2x = 16
=> x = 16/2 = 8


So, second side = x = 8 cm
Third side = x + 5 = 8 + 5 = 13 cm


Semi \:  perimeter  =  \frac{a + b + c}{2}  \\  \\  =  \frac{11 + 8 + 13}{2}  =  \frac{32}{2}  = 16 \: cm


Now,

By using heron's formula,

Find the area of a triangle :-

area \:  =  \sqrt{s(s - a)(s - b)(s - c) }  \\   \\ =  \sqrt{16(16 - 11)(16 - 8)(16 - 13) }  \\  \\  =  \sqrt{16 \times 5 \times 8 \times 3}  \\  \\  =   \sqrt{1920}  = 43.81 \: approx.

Answer : Area of triangle = 43.81 cm²

adityasahu73: hii
Answered by Anonymous
48
Solutions :-


There are three sides in a triangle.

Suppose
First side = a
Second side = b
Third side = c
Semi perimeter = s


Given :

Perimeter of triangle = 32 cm
Side a = 11 cm

Let the side b be x
So, side c = x + 5


We know,
Perimeter of triangle = sum of all sides of triangle


A/q

=> a + b + c = 32
=> 11 + x + x + 5 = 32
=> 2x + 16 = 32
=> 2x = 32 - 16
=> 2x = 16
=> x = 16/2 = 8


Therefore, side b = x = 8 cm
Side c = x + 5 = 8 + 5 = 13 cm


Find the semi perimeter of triangle :-

s =   ( \frac{a + b + c}{2}) cm \\  \\  = ( \frac{11 + 8 + 13}{2} )cm \\  \\  = ( \frac{32}{2} )cm \:  = 16 \: cm



Now,

By heron's formula,

Area of triangle =>

area \: = \sqrt{s(s - a)(s - b)(s - c) } \\ \\ = \sqrt{16(16 - 11)(16 - 8)(16 - 13) } \\ \\ = \sqrt{16 \times 5 \times 8 \times 3}  \\  \\  =  \sqrt{2 \times 2 \times 2 \times 2 \times 5 \times 2 \times 2 \times 2 \times 3}  \\  \\  = 2 \times 2 \times 2 \times  \sqrt{5 \times 2 \times 3}  \\  \\  = 8 \times  \sqrt{30}   \\  \\ =  8 \sqrt{30}  \:  \:  \:  \: or \:  \: 43.81 \: \:  \:  approx.


Hence,
Area of triangle is 8√30 cm² or 43.81 cm²

adityasahu73: huu
Similar questions