Math, asked by njitdhillon10, 17 days ago

Find area of quadrilateral whose diagonal is 24m and perpendiculars on it are 10m and 12m.​

Answers

Answered by ⱮøøɳƇⲅυѕɦεⲅ
20

Given :

  • Diagonal of quadrilateral = 24m
  • Length of perpendiculars = 10m and 12m

To Find :

  • Area of quadrilateral

Formula Using :

 \Large\begin{gathered} {\underline{\boxed{ \rm {\red{Area \:  = \:  \frac{1}{2} \:  \times  \: d \:  \times  \:  ( h_1 + h_2)  }}}}}\end{gathered}

  • d denotes diagonal
  • h1 and h2 denotes length of perpendiculars

Solution :

\tt \large  \green\leadsto \:Area \:  = \:  \frac{1}{2} \:  \times  \: d \:  \times  \:  ( h_1 + h_2)  \: \:   \: \\  \\ \tt \large  \green\leadsto \:Area \:  = \:  \frac{1}{2} \:  \times  \: 24 \:  \times  \:  ( 10 + 12) \\  \\ \tt \large  \green\leadsto \:Area \:  = \:  \frac{1}{2} \:  \times  \: 24 \:  \times  \:  ( 22)  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \tt \large  \green\leadsto \:Area \:  = \:  \frac{1}{  \cancel2} \:  \times  \:  \cancel{24}\: ^{\rm \ \purple{12} }  \:  \times  \:  ( 22) \:  \:  \:  \\  \\ \tt \large  \green\leadsto \:Area \:  = \:  12 \:  \times  \: 22 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \\  \\  \tt \large  \green\leadsto \:Area \:  = \:  264 \:  {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence , the area of quadrilateral is 264 cm²

Similar questions