find area of shaded region in figure, where AD=12CM, BD=16CM, AC=52CM, BC=48CM
Attachments:
![](https://hi-static.z-dn.net/files/db7/5a5bb4d8215d2757ac2058a246ef1289.jpg)
Answers
Answered by
19
Area of shaded region = area of ∆ABC - area of ∆ADB.
_____________
![\textbf{Find area of triange ADB:} \textbf{Find area of triange ADB:}](https://tex.z-dn.net/?f=+%5Ctextbf%7BFind+area+of+triange+ADB%3A%7D)
∆ADB is a right angle triangle.
In ∆ADB,
AD = 12 cm
BD = 16 cm
Ar(∆ADB) = 1/2 × base × height
=> Ar(∆ADB) = 1/2 × AD × BD
=> Ar(∆ADB) = 1/2 × 12 × 16
=> Ar(∆ADB) = 96 cm^2
____________________
![\textbf{Find area of triange ABC} \textbf{Find area of triange ABC}](https://tex.z-dn.net/?f=+%5Ctextbf%7BFind+area+of+triange+ABC%7D)
you can find AB by using Pythagoras theorem.
![{AB}^{2} = {AD}^{2} +{ BD}^{2} \\ \\ {AB}^{2} = {12}^{2} + {16}^{2} \\ \\ {AB}^{2} = 144 + 256 = 400 \\ \\ AB = \sqrt{400} \\ \\ AB = 20 \: cm {AB}^{2} = {AD}^{2} +{ BD}^{2} \\ \\ {AB}^{2} = {12}^{2} + {16}^{2} \\ \\ {AB}^{2} = 144 + 256 = 400 \\ \\ AB = \sqrt{400} \\ \\ AB = 20 \: cm](https://tex.z-dn.net/?f=+%7BAB%7D%5E%7B2%7D+%3D+%7BAD%7D%5E%7B2%7D+%2B%7B+BD%7D%5E%7B2%7D+%5C%5C+%5C%5C+%7BAB%7D%5E%7B2%7D+%3D+%7B12%7D%5E%7B2%7D+%2B+%7B16%7D%5E%7B2%7D+%5C%5C+%5C%5C+%7BAB%7D%5E%7B2%7D+%3D+144+%2B+256+%3D+400+%5C%5C+%5C%5C+AB+%3D+%5Csqrt%7B400%7D+%5C%5C+%5C%5C+AB+%3D+20+%5C%3A+cm)
The sides of the triangle are 48cm, 52cm and 20cm.
![s = \frac{48 + 52 + 20}{2} = \frac{120}{2} = 60 \: cm \\ s = \frac{48 + 52 + 20}{2} = \frac{120}{2} = 60 \: cm \\](https://tex.z-dn.net/?f=s+%3D+%5Cfrac%7B48+%2B+52+%2B+20%7D%7B2%7D+%3D+%5Cfrac%7B120%7D%7B2%7D+%3D+60+%5C%3A+cm+%5C%5C+)
![\text{Area of triangle ABC} = \sqrt{s(s - a)(s - b)(s - c)} \\ \\ = \sqrt{60 \times (60 - 52)(60 - 48)(60 - 20) } \text{Area of triangle ABC} = \sqrt{s(s - a)(s - b)(s - c)} \\ \\ = \sqrt{60 \times (60 - 52)(60 - 48)(60 - 20) }](https://tex.z-dn.net/?f=%5Ctext%7BArea+of+triangle+ABC%7D+%3D+%5Csqrt%7Bs%28s+-+a%29%28s+-+b%29%28s+-+c%29%7D+%5C%5C+%5C%5C+%3D+%5Csqrt%7B60+%5Ctimes+%2860+-+52%29%2860+-+48%29%2860+-+20%29+%7D+)
![= \sqrt{60 \times 8 \times 12 \times 40} \\ \\ = \sqrt{230400} \\ \\ = 480 \: {cm}^{2} = \sqrt{60 \times 8 \times 12 \times 40} \\ \\ = \sqrt{230400} \\ \\ = 480 \: {cm}^{2}](https://tex.z-dn.net/?f=%3D+%5Csqrt%7B60+%5Ctimes+8+%5Ctimes+12+%5Ctimes+40%7D+%5C%5C+%5C%5C+%3D+%5Csqrt%7B230400%7D+%5C%5C+%5C%5C+%3D+480+%5C%3A+%7Bcm%7D%5E%7B2%7D)
_______________________
Area of shaded region = area of ∆ABC - area of ∆ADB.
=> Area of shaded region = 480 - 96
=> Area of shaded region = 384 cm^2
_____________
∆ADB is a right angle triangle.
In ∆ADB,
AD = 12 cm
BD = 16 cm
Ar(∆ADB) = 1/2 × base × height
=> Ar(∆ADB) = 1/2 × AD × BD
=> Ar(∆ADB) = 1/2 × 12 × 16
=> Ar(∆ADB) = 96 cm^2
____________________
you can find AB by using Pythagoras theorem.
The sides of the triangle are 48cm, 52cm and 20cm.
_______________________
Area of shaded region = area of ∆ABC - area of ∆ADB.
=> Area of shaded region = 480 - 96
=> Area of shaded region = 384 cm^2
Similar questions
English,
8 months ago
English,
8 months ago
Math,
8 months ago
Science,
1 year ago
Computer Science,
1 year ago
Computer Science,
1 year ago
English,
1 year ago