Math, asked by riteshsonawane99, 6 months ago

Find area of the circle x^2+y^2=36 by using definite integration

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\textsf{Circle is}\;\mathsf{x^2+y^2=36}

\underline{\textbf{To find:}}

\textsf{Area of the given circle}

\underline{\textbf{Solution:}}

\mathsf{Put\;y=0,}

\mathsf{x^2=36\implies\;x=\pm\,6}

\therefore\textsf{The circle meets x-axis at (-6,0) and (6,0)}

\textsf{Similarly, the circle meets the y-axis at (0,6) and (0,-6)}

\textsf{Since the circle is symmetric with respect to both the axes,}

\mathsf{Area\;o\;the\;circle}

\mathsf{=4{\times}Area\;bounded\;by\;the\;circle\;in\;I\;quadrant}

\therefore\mathsf{=4{\times}\displaystyle\int\limits^6_0\;y\;dx}

\therefore\mathsf{=4{\times}\displaystyle\int\limits^6_0\;\sqrt{36-x^2}\;dx}

\therefore\mathsf{=4{\times}\displaystyle\int\limits^6_0\;\sqrt{6^2-x^2}\;dx}

\textsf{Using the formula,}

\boxed{\mathsf{\int\;\sqrt{a^2-x^2}\;dx=\dfrac{x\sqrt{a^2-x^2}}{2}+\dfrac{a^2}{2}\,sin^{-1}\left(\dfrac{x}{a}\right)+C}}

\mathsf{=4\left[\dfrac{x\sqrt{6^2-x^2}}{2}+\dfrac{6^2}{2}\,sin^{-1}\left(\dfrac{x}{6}\right)\right]^6_0}

\mathsf{=4\left[\dfrac{x\sqrt{6^2-6^2}}{2}+\dfrac{6^2}{2}\,sin^{-1}\left(\dfrac{6}{6}\right)-(0+0)\right]}

\mathsf{=4\left[0+18\,\dfrac{\pi}{2}-(0)\right]}

\mathsf{=4\left[\dfrac{18\pi}{2}\right]}

\mathsf{=36\,\pi\;square\;units}

\underline{\textbf{Find more:}}

Limit 0 to Pi /2 integration xsinx

https://brainly.in/question/5372600

Attachments:
Similar questions