Math, asked by sarojvishwakarma9876, 3 months ago

Find area of triangle by Heron's formula having sides 60 cm, 100cm, and 140 cm.​

Answers

Answered by Yuseong
14

Given Information :

• Sides of the triangle :

  • a = 60 cm
  • b = 100 cm
  • c = 140 cm

To calculate :

• Area of the triangle by Heron's formula.

Calculation :

Heron's formula :

\boxed{ \sf { Area_{(\Delta) } = \sqrt{s(s-a)(s-b)(s-c)}} }

  • s = semi-perimeter
  • a, b and c are sides.

Let's find out the Semi-perimeter of the first.

 \longmapsto Semi-perimeter =  \sf \dfrac{a+b+c}{2}

 \longmapsto Semi-perimeter =  \sf \dfrac{(60+100+140) \: cm}{2}

 \longmapsto Semi-perimeter =  \sf \dfrac{(160+140) \: cm}{2}

 \longmapsto Semi-perimeter =  \sf \dfrac{300 \: cm}{2}

 \implies \boxed { \sf \red { Semi-perimeter = 150 \: cm}}

Now, substitute the value of Semi-perimeter and the sides in the formula .

 \longrightarrow \sf { Area_{(\Delta) } = \sqrt{s(s-a)(s-b)(s-c)} }

 \longrightarrow \sf { Area_{(\Delta) } = \sqrt{150(150-60)(150-100)(150-140)} \: cm^2}

 \longrightarrow \sf { Area_{(\Delta) } = \sqrt{150(90)(50)(10)} \: cm^2}

 \longrightarrow \sf { Area_{(\Delta) } = \sqrt{150 \times 90 \times 50 \times 10} \: cm^2}

 \longrightarrow \sf { Area_{(\Delta) } = \sqrt{15 \times 10 \times 3 \times 3 \times 10 \times 5 \times 10 \times 10} \: cm^2}

 \longrightarrow \sf { Area_{(\Delta) } =10 \times 10 \times 3 \sqrt{15 \times 5 } \: cm^2}

 \longrightarrow \sf { Area_{(\Delta) } = 300 \sqrt{5 \times 5 \times 3 } \: cm^2}

 \longrightarrow \sf { Area_{(\Delta) } = 300 \times 5 \sqrt{3 } \: cm^2}

 \implies \boxed { \sf \red { Area_{(\Delta) } = 1500 \sqrt{3} \: cm^2}}

Therefore, area of the ∆ is 1500√3  \sf cm^2 .

 \Large {\underline { \sf {A \: little \: further !!}}}

More about triangles :

  • Sum of interior angles of a triangle = 180°
  • Sum of two interior opposite angles of ∆ = Exterior angle of ∆
  • Perimeter of triangle = Sum of all sides
  • Area of an equilateral triangle = ‌\sf { \dfrac{\sqrt{3}}{4} \times  {Side}^{2} }
  • Area of ∆ = \sf { \dfrac{1}{2} \times Base \times Height }

Answered by thebrainlykapil
21

Given :

  • 1st side of Triangle = 60cm
  • 2nd side of Triangle = 100cm
  • 3rd side of Triangle = 140cm

 \\

To Find :

  • Area of Triangle

 \\

Solution :

✰ As we know that, if three sides of a triangle are given then we have to use Heron's Formula to find the area of the Triangle. Now in this question, Three sides are given so firstly we will find the semi perimeter of the Triangle and then we will apply Heron's Formula to find the area of the Triangle.

⠀⠀⠀⟼⠀⠀⠀s = a + b + c/2

⠀⠀⠀⟼⠀⠀⠀s = 60 + 100 + 140/2

⠀⠀⠀⟼⠀⠀⠀s = 160 + 140/2

⠀⠀⠀⟼⠀⠀⠀s = 300/2

⠀⠀⠀⟼⠀⠀⠀s = 150cm

Thus semi perimeter of Triangle is 150cm

________________

✰ Now, We will find the area of the Triangle using Heron's Formula.

➟ √s (s - a) (s - b) (s - c)

➟ √150 (150 - 60) (150 - 100) (150 - 140)

➟ √150 × 90 × 50 × 10

➟ √13500 × 500

➟ √6750000

➟ 2,598.07cm²

Thus Area of Triangle is 2,598.07cm²

________________

Similar questions