Math, asked by ramasamy71, 4 months ago

find area of triangle using herons formula if sides are 15cm,15cm,17cm

Answers

Answered by Aryan0123
10

Area of Triangle (Heron's Formula)

Area of Δ = \sqrt{s (s - a) (s - b) (s - c)}

where s (semi-perimeter) =  \frac{a + b + c}{2}

Given:

a = b = 15 cm

c = 17 cm

To Find:

Area of Δ

Method:

s = \frac{a + b + c}{2}

⇒ s = \frac{15 + 15 + 17}{2}

⇒ s = \frac{47}{2}

Area of Δ = \sqrt{\frac{47}{2} (\frac{47}{2} - 15) (\frac{47}{2} - 15) (\frac{47}{2} - 17) }

⇒ Area =  \sqrt{\frac{47}{2} (\frac{47 - 30}{2}) (\frac{47 - 30}{2}) (\frac{47 - 34}{2}) }

⇒ Area = \sqrt{\frac{47}{2} (\frac{17}{2}) (\frac{17}{2}) (\frac{13}{2}) }

⇒ Area = \sqrt{\frac{47}{2} (\frac{17}{2})^{2}(\frac{13}{2}) }

⇒ Area = \frac{17}{2} \sqrt{\frac{47}{2} \frac{13}{2}  }

⇒ Area = \frac{17}{2} \sqrt{\frac{611}{4} }

⇒ Area = \frac{17}{4} \sqrt{611}

⇒ Area = \frac{17}{4}  X 24.718

⇒ Area = 4.25 X 24.718 cm²

⇒ Area of Triangle = 105.0515 cm²

Answered by Kavithabindu2513
4

Answer:

A = 15cm, B = 15cm, C = 17cm

semiperimeter of ∆ ABC, s = (15+15+17)/2 = 47/2 = 23.5

By heron's formula, we know ;

A = √[s (s-a)(s-b)(s-c)]

Hence, A = √[23.5(23.5-15) (23.5-15) (23.5-17)]

A =√[23.5×8.5×8.5×6.5]

A = √11036.1875 cm2

A = 105.0532 cm2

....... please like and follow guy's ❤️

Similar questions