Math, asked by lolkumar345, 9 months ago

find area of triangle whose height is 8cm and base is 20 cm​

Answers

Answered by Anonymous
55

\bf{\underline{\underline{\bigstar\bigstar\: Figure : }}}\\

\:\:

\setlength{\unitlength}{1.6mm}\begin{picture}(50,20)\linethickness{0.1mm}\put(-3,-3){\line(1,1){20}}\put(-3,-3){\line(1,0){39.5}}\put(36.6,-2.8){\line(-1,1){19.8}}\put(17,-3){\line(0,1){20}}\put(18,5){8cm}\put(3,5){}\put(13,-5){20cm}\put(20,-4.5){\vector(1,0){13}}\put(11,-4.5){\vector(-1,0){13}}\put(18,6.8){\vector(0,1){7}}\put(18,4){\vector(0,-1){7}}\end{picture}

\:\:

\bf{\underline{\underline{\bigstar\bigstar\: Given : }}}\\

\:\:

  • \footnotesize{ Height\: of\: triangle = 8cm}\\

  • \footnotesize{ Base\: of\: triangle = 20cm}\\

\:\:

\bf{\underline{\underline{\bigstar\bigstar\: To\:Find :  }}}\\

\:\:

  • \footnotesize{ Area\: of\: triangle }\\

\:\:

\bf{\underline{\underline{\bigstar\bigstar\: Solution : }}}\\

\:\:

\footnotesize{ Area\: of\: triangle = \dfrac{1}{2}\times Base \times Height}\\

\footnotesize{\implies Area\: of\: triangle = \dfrac{1}{2}\times 20cm \times 8cm }\\

\footnotesize{\implies  Area\: of\: triangle = \dfrac{1}{\cancel{2}} \times \cancel{20cm} \times 8cm}\\

\footnotesize{\implies Area\: of\: triangle =  1 \times 10cm \times 8cm}\\

\footnotesize{\implies Area\: of\: triangle = {80cm}^{2} }\\


Nereida: Good.
Answered by BrainlyBeast
23

\bf{\purple{\underline{ \;Given:}}}

Height of the triangle = 8cm

base of the triangle = 20 cm

\bf{\pink{\underline{ \;To\;Find}}}

\boxed{\blue{Area\;of\;the\;triangle}}

Solution:

Area of triangle =

\boxed{\green{area \;=\;\frac{1}{2}* base*height}}

\sf{\implies area\;=\;\frac{1}{2}*20*8}

\sf{\implies area\;=\;\frac{1}{\cancel 2}\cancel20 *8}

\sf{\implies area\;=\;10*8\implies 80 {cm}^{2}}

So ,the area of triangle be

\boxed{\boxed{\boxed{area\;=\;80{cm}^{2}}}}


Nereida: Good.
Similar questions