Math, asked by ParvRudra, 1 year ago

find area of triangle whose perimeter is180 sides are 80&18.calculate the altitudeof triangle corresponding to shortest sides

Answers

Answered by Rockyhandsome2345
1
80 cm will be the answer
Attachments:

ParvRudra: thanx bro
Answered by Anonymous
2

\huge{\underline{\underline{\red{♡Solution→}}}}

__________________________

\bold{\huge{\underline{\underline{\rm{ Given :}}}}}

Sides,

a = 80

b = 18

perimeter (p) = 180

\bold{\huge{\underline{\underline{\rm{ To\:Find :}}}}}

Altitude of Triangle or the height (h) of Triangle.

__________________________

The herons formula to find Area of Triangle is :

area(a) =  \sqrt{s(s - a)(s - b)(s - c)}

Where s is half perimeter.

s =  \frac{a + b + c}{2}

__________________________

\purple{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

P = 180

We know that

  • P = a + b + c

So,

a + b + c = 180

80 + 18 + c = 180

c = 180 - 98

c = 82

s =  \frac{80+18+82}{2}  \\ s =  \frac{180}{2}

s = 90

Now Area is ,

a =  \sqrt{90(90-80)(90-18)(90-82)}  \\ a =  \sqrt{90 \times 10 \times 72 \times 8}

a =  \sqrt{518400}

\boxed{a =720 }

Now We know that -

  • a =  \frac{1}{2}  \times  </strong><strong>widt</strong><strong>h</strong><strong> (</strong><strong>b</strong><strong>)</strong><strong> \times </strong><strong>height</strong><strong> (</strong><strong>h</strong><strong>)</strong><strong>

So,

720 =  \frac{1}{2}  \times  18 \times (h)

720 =  9 \times (h)

h =  \frac{720}{9}

\boxed{h = 80\:cm}

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions