Math, asked by sohelgora9777, 1 year ago

Find area of triangle whose sides are 140cm,120cm,200

Answers

Answered by aariztkhan
0

Step-by-step explanation:

We are going to solve this using Heron's Formula

So first we need the semiperimeter

S= 140+120+200/2

S=230 cms

let a,b and c be 140, 120 and 200 cms respectively

ar triangle= root[s(s-a)(s-b)(s-c)]

= root[230(90)(110)(30)]

= root[68310000] cms

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=8264.98\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle =140 cm,120 cm,200 cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{140+120+200}{2} \\ \\ : \implies s = \frac{460}{2} \\ \\ \green{ : \implies s =230 } \\ \\ \circ\: \bold{Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{230(230- 140)(230-120)(230- 200)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{230\times 90\times110\times 30} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{68310000} \\ \\ : \implies \text{Area \: of \: triangle =}8264.98\: cm^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle =8264.98\: {cm}}^{2} }

Similar questions