Math, asked by nisikant54, 9 months ago

Find area of triangle whose vertices are (3,5), (5,8) and (1,2).​

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=0\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies Coordinate \: of \: A= (3,5) \\  \\ \tt: \implies Coordinate \: of \: B = (5,8) \\  \\ \tt: \implies Coordinate \: of \: C = (1,2) \\  \\ \red{\underline \bold{To \: Find:}} \\ \tt:  \implies Area \: of \: triangle = ?

• According to given question :

 \bold{As \: we \: know \: that} \\   \tt: \implies Area  \: of \: triangle =  \frac{1}{2} |( x_{1}( y_{2} - y_{3}) +  x_{2} ( y_{3} -  y_{1} ) +  x_{3}( y_{1} -  y_{2}))| \\  \\ \tt: \implies Area  \: of \: triangle =  \frac{1}{2}|(3(8 - 2) + 5(2 - 5) + 1(5 - 8))| \\  \\ \tt: \implies Area  \: of \: triangle =  \frac{1}{2}|(3 \times 6 + 5 \times ( - 3) + 1 \times ( - 3) )|\\  \\ \tt: \implies Area  \: of \: triangle =  \frac{1}{2}|(18 - 15 - 3)| \\  \\ \tt: \implies Area  \: of \: triangle =  \frac{1}{2}|(18 - 18)| \\  \\ \tt: \implies Area  \: of \: triangle =  \frac{1}{2} \times 0 \\  \\  \green{\tt: \implies Area  \: of \: triangle =  0 \: units}

Answered by Anonymous
4

Answer:-

∆area = 1/2 [x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)

∆area = 1/2 [3(8 - 2) + 5(2 - 5) + 1(5b- 8)]

∆area = 1/2 (18-15-3)

∆area = 1/2 × 0

∆area = 0

Hence, the area of a triangle is 0 units.

☺☺

Similar questions