Math, asked by ashutoshchakarvty, 9 months ago

find Area of triangular park
Whose two Bide are 18cm and
10cm. fare Perimetey is 42cm.
find the cost of force at the
rate
of
5 paise/cm​

Answers

Answered by monicamalik1212
1
Given,
Side a=18cm
Side b=10cm
Perimeter=42cm=a+b+c
:. Putting value
42=18+10+c
42=28+c
42-28=c
14=c
Now,
S=(a+b+c)/2
:. Putting value
S=42/2
S=21
Now according to Heron's formula-
Area of a triangle
=√{s(s-a)(s-b)(s-c)}
:. Putting value
=√{21(21-18)(21-10)(21-14)}
=√{21(3)(11)(7)}
=√4851
=21√11cm²



Please mark as brainiest answer
Answered by tusharraj77123
10

Answer:

\large\mathbb\color{purple}\underline{\underline{Question:}}

\textsf{Find the area of the triangular park. Whose}

\textsf{two sides are 18 cm and 10 cm.The}

\textsf{perimeter is 42 cm.Find the cost of}

\textsf{fence at the rate of 5 paise / cm .}

\large\mathbb\color{orange}\underline{\underline{Given:}}

\textsf{Height of the triangle = 18 cm}

\textsf{One side of the triangle = 10 cm}

\textsf{Perimeter of the triangle = 42 cm}

\textsf{Cost of the fence per cm = 5 paise}

\large\mathbb\color{red}\underline{\underline{To\:find:}}

\textsf{(i) Area of the triangle}

\textsf{(ii) Cost of the fence of the triangular park}

\large\mathbb\color{cyan}\underline{\underline{Taken:}}

\bold\green{Base=P-(H+S)}

\bold{Where,}

\bold{P=Perimeter\:of\:the\:triangle}

\bold{H=Height\:of\:the\:triangle}

\bold{S=Side\:of\:the\:triangle}

\bold\green{Area=\frac{H×B}{2}}

\bold{Where,}

\bold{B=Base\:of\:the\:triangle}

\bold{B=Base\:of\:the\:triangle}

\bold\green{Cost\:of\:the\:fence=P×Cost\:per\:cm}

\large\mathbb\color{magenta}\underline{\underline{Concept:}}

\textsf{First find the base of the triangle then find the area.}

\textsf{At last find the cost of the fence.}

\large\mathbb\color{blue}\underline{\underline{Solution:}}

\bold\purple{Base:}

\bold{Taken,Base=P-(H+S)}

\bold{Base=42cm-(18cm+10cm)}

\bold{Base=42cm-28cm}

\bold{Base=20cm}

\bold\purple{Now,find\:the\:area}

\bold{Taken,Area=\frac{H×B}{2}}

\bold{Area=\frac{18cm×20cm}{2}}

\bold{Area=\frac{360cm}{2}}

\therefore\boxed{\red{Area=180cm}}

_________________________________

\bold\purple{Cost\:of\:the\:fence:}

\bold{Taken,Cost\:of\:the\:fence=P×Cost\:per\:cm}

\bold{Cost\:of\:the\:fence=42cm×5p/cm}

\therefore\boxed{\red{Cost\:of\:the\:fence=210p\:or\:2\:rs\:10\:p}}

_________________________________

So , the area of the triangle is 180 cm .

And the cost of the fence of triangular park is 2.10 .

HOPE IT HELPS YOU

Similar questions