Math, asked by shubhamshah2905, 6 months ago

find areas of shaded regiion

Attachments:

Answers

Answered by manu170605
0

area \: of \: square = 21 \times 21 \\  \:  \:  \:  = 441 {cm}^{2}  \\ if \: we \: construct \: in \: the \: without \: shading \: diagram \:  \\ the \: it \: has \: 4 \: circles \: and \: they \: are \: equal \: diameter . \\  \\ total \: line \: of \: without \: shading \: region = 21 - (6.5 + 6.5) \\  = 21 - 13.0 \\  = 8.0 \: cm \\ so \:  \: diameter \: of \: a \: circle \:  = 8 \div 2 = 4cm \\ rdius \: of \: a \: circle = 2cm \\  \\ without \: shading \: region \: make \: small \: square = 4 \times 4 \:  \\  = 16 {cm}^{2}  \\ area \: of \:4 semicircle \:  = 4 \times \pi \times r \\  = 4 \times 3.14 \times 2 = 25.12 {cm}^{2}  \\ area \: of \: shaded \: region \:  = 441 - (25.12 + 16)  \\ = 441 - 41.12  \\  = 399.88 {cm}^{2}

Similar questions