Find argument of 1-√3i
Answers
Answer:
−2π/3
Step-by-step explanation:
Let z=−1−i
Let z=−1−i 3
Let z=−1−i 3
Let z=−1−i 3
Let z=−1−i 3 Then α=tan
Let z=−1−i 3 Then α=tan −1
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣ 3
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣ 3
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣ 3 /1
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣ 3 /1 ∣
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣ 3 /1 ∣∣
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣ 3 /1 ∣∣∣
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣ 3 /1 ∣∣∣
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣ 3 /1 ∣∣∣ =π/3
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣ 3 /1 ∣∣∣ =π/3Here, z is in the third quadrant.
Let z=−1−i 3 Then α=tan −1 ∣b/a∣=tan −1 ∣∣∣ 3 /1 ∣∣∣ =π/3Here, z is in the third quadrant.Therefore, argument is θ=−(π−α)=−(π−π/3)
=−2π/3