Physics, asked by yashwant00, 10 months ago

find avg velocity of given data between 1s to 3s : ​

Attachments:

Answers

Answered by dorgan399
4

Explanation:

plz refer to the attachment

Attachments:
Answered by ShivamKashyap08
13

Answer:

  • The average velocity (v) of the data is 20 i + 6 j

Given:

  1. Given Equation \displaystyle \sf \overrightarrow{\sf r} = 5\;t^{2}\;\hat{i}\;+\;6\;t\;\hat{j}\;+\;7\;\hat{k}

Explanation:

\rule{300}{1.5}

Firstly finding the Distance travelled at t = 1 sec.

\displaystyle \sf \overrightarrow{\sf r} = 5\;t^{2}\;\hat{i}\;+\;6\;t\;\hat{j}\;+\;7\;\hat{k}

Substituting,

\displaystyle \Rightarrow\sf r_{1} = 5 \times(1)^{2}\;\hat{i}\;+\;6\times(1)\;\hat{j}\;+\;7\;\hat{k}\\\\\\\Rightarrow\sf r_{1}=5\;\hat{i}\;+\;6\;\hat{j}\;+\;7\;\hat{k}\\\\\\\Rightarrow\sf r_{1}=5\;\hat{i}\;+\;6\;\hat{j}\;+\;7\;\hat{k}\quad\dfrac{\quad}{}\;(1)

\rule{300}{1.5}

\rule{300}{1.5}

Now, Finding the Distance travelled at t=3 sec.

\displaystyle \sf \overrightarrow{\sf r} = 5\;t^{2}\;\hat{i}\;+\;6\;t\;\hat{j}\;+\;7\;\hat{k}

Substituting,

\displaystyle \Rightarrow\sf r_{2} = 5 \times(3)^{2}\;\hat{i}\;+\;6\times(3)\;\hat{j}\;+\;7\;\hat{k}\\\\\\\Rightarrow\sf r_{2}=5\times 9\;\hat{i}\;+\;6\times3\;\hat{j}\;+\;7\;\hat{k}\\\\\\\Rightarrow\sf r_{2}=45\;\hat{i}\;+\;18\;\hat{j}\;+\;7\;\hat{k}\\\\\\\Rightarrow\sf r_{2}=45\;\hat{i}\;+\;18\;\hat{j}\;+\;7\;\hat{k}\quad\dfrac{\quad}{}\;(2)

\rule{300}{1.5}

\rule{300}{1.5}

From the Formula we know,

\Rightarrow\sf Average\;velocity=\dfrac{Final\;disp.-Initial\;Disp.}{Total\;time\;taken}

i.e. \sf v=\dfrac{r_{2}-r_{1}}{t_{2}-t_{1}}

Substituting the values,

\displaystyle\Rightarrow\sf v=\dfrac{45\;\hat{i}\;+\;18\;\hat{j}\;+\;7\;\hat{k}-(5\;\hat{i}\;+\;6\;\hat{j}\;+\;7\;\hat{k})}{3-1}\\\\\\\Rightarrow\sf v=\dfrac{45\;\hat{i}\;+\;18\;\hat{j}\;+\;7\;\hat{k}-5\;\hat{i}\;-\;6\;\hat{j}\;-\;7\;\hat{k}}{3-1}\\\\\\\Rightarrow\sf v=\dfrac{(45-5)\;\hat{i}\;+\;(18-6)\;\hat{j}\;+\;(7-7)\;\hat{k}}{3-1}\\\\\\\Rightarrow\sf v=\dfrac{40\;\hat{i}\;+\;12\;\hat{j}\;+\;0\;\hat{k}}{2}\\\\\\\Rightarrow\sf v=\dfrac{2\times(20\;\hat{i}\;+\;6\;\hat{j})}{2}\\\\

\displaystyle\Rightarrow\sf v=20\;\hat{i}\;+\;6\;\hat{j}\\\\\\\Rightarrow\sf \large{\underline{\boxed{\red{\sf v=20\;\hat{i}\;+\;6\;\hat{j}\;m/s}}}}

The average velocity (v) of the data is 20 i + 6 j.

\rule{300}{1.5}

\rule{300}{1.5}

Now, Finding the magnitude of the velocity.

\displaystyle\Rightarrow\sf |v|=\sqrt{(v_{x})^{2}+(v_{y})^{2}}

Substituting the values,

\displaystyle\Rightarrow\sf |v|=\sqrt{(20)^{2}+(6)^{2}}\\\\\\\Rightarrow\sf |v|=\sqrt{400+36}\\\\\\\Rightarrow\sf |v|=\sqrt{436}\\\\\\\Rightarrow\sf |v|=20.88\\\\\\\Rightarrow \large{\underline{\boxed{\red{\sf |v|=20.88\;m/s}}}}

The magnitude of average velocity is 20.88 m/s.

\rule{300}{1.5}

Similar questions