Math, asked by ally8, 1 year ago

find b : √2+√3 / 3√2-2√3 = 2-b√6

Answers

Answered by sagnik19
2
Hello here is your sol.... hope this helps :)
Attachments:
Answered by DaIncredible
2
Hey friend,
Here is the answer you were looking for:
b : \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2}  - 2 \sqrt{3} }  = 2 - b \sqrt{6}  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} - 2 \sqrt{3}  }  \times  \frac{3 \sqrt{2}  + 2 \sqrt{3} }{3 \sqrt{2}  + 2 \sqrt{3} }  \\  \\ using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}   -  {b}^{2} \\  \\  =  \frac{ \sqrt{2}  \times 3 \sqrt{2}  +  \sqrt{2} \times 2 \sqrt{3}   +  \sqrt{3} \times 3 \sqrt{2}  +  \sqrt{3}   + 2 \sqrt{3} }{ {(3 \sqrt{2} )}^{2}  -  {(2 \sqrt{3}) }^{2} }  \\  \\  =  \frac{6 + 2 \sqrt{6}  + 3 \sqrt{6} + 6 }{18 - 12}  \\  \\  =  \frac{12 + 5 \sqrt{6} }{6}  \\  \\   2 +  \frac{5}{6}  \sqrt{6}  = 2  -  b \sqrt{6}  \\  \\ b =  -  \frac{5}{6}

Hope this helps!!!

@Mahak24

Thanks...
☺☺
Similar questions