Math, asked by rekha4974, 1 year ago

Find b, given that a=20, angle A= 30 degrees, and angle B= 45 degrees in triangle ABC

Answers

Answered by cynically007
1

Step-by-step explanation:

This can be solved by many ways :-

1) Using the Sine Rule of triangles :-

The Sine rule states that :-

a / Sin A  =  b / Sin B  =  c / Sin C

∴  a / Sin A  =  b / Sin B

∴ 20 / Sin 30°  =  b / Sin 45°

∴ 20 / (1/2)  =  b / (1 / √2)

∴ 40  =  √2 × b

∴ b  =  40 / √2  =  20√2.

∴ b  =  20√2

# If you want the solution in any other method please comment. I would be glad to help you !!!

Answered by Dexteright02
6

Hello!

Find b, given that a=20, angle A= 30 degrees, and angle B= 45 degrees in triangle ABC

  • The side b is opposite to the angle B, applying the law of the sines, we have:

\dfrac{a}{sinA} = \dfrac{b}{sinB}

\dfrac{20}{sin30^0} = \dfrac{b}{sin45^0}

\dfrac{20}{ \dfrac{1}{2} } = \dfrac{b}{ \dfrac{ \sqrt{2} }{2} }

 

20* \dfrac{ \sqrt{2} }{2}  = b* \dfrac{1}{2}

\dfrac{20 \sqrt{2} }{2} = \dfrac{b}{2}

2*b =2*20 \sqrt{2}

 

2\:b = 40 \sqrt{2}

 

b = \dfrac{40 \sqrt{2} }{2}

 

\boxed{\boxed{b = 20 \sqrt{2} }}\:\:\:\:\:\:\bf\green{\checkmark}

Answer:

b = 20√2

________________________

\bf\purple{I\:Hope\:this\:helps,\:greetings ...\:Dexteright02!}\:\:\ddot{\smile}

Similar questions