Math, asked by KartikPalan, 9 months ago

Find b if 2x^3 + bx²-7x -12 is perfectly dívisble by
x+2​

Answers

Answered by KJB811217
35

Answer:

14

Step-by-step explanation:

Here, p(x) = 2x³+bx²-7x-12

g(x) = x+2

As x+2 is a factor of p(x) so,

Put g(x) and p(x) = 0

g(x) = 0

x+2 = 0

So, x= -2 in p(x)

p(x) = 0

that means:-

2x³ + bx² -7x -12 = 0

Put x = -2

2(-2)³ + b(-2)² -7(-2)-12=0

-16 +4b + 14 -12 = 0

-16-12+14+4b= 0

-28+14+b= 0/4

-14+b= 0

b= 0+14

b= 14

Hope it helps....

Thanks....

Answered by Anonymous
12

Answer:

\huge\boxed{\fcolorbox{purple}{yellow}{Answer}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 {2x}^{3}  + bx {}^{2}  - 7x - 12 \\  \ \\ 2( - 2) {}^{3}  +  {b( - 2)}^{2}  - 7( - 2) - 12 \\  \\ 2( - 8) + b( - 4) - 7( - 2) - 12 \\   \\ 16  - 4b - 14 - 12 \\  \\ 4b - 14 - 4 \\

4b - 18

\large{\red{\underline{\tt{so answer is}}}}

\large{\red{\underline{\tt{4b-18}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

<marquee>❤</marquee>

Similar questions