Math, asked by ananditadebnath11, 1 month ago

Find both maximum and minimum vaule of 3x^4 -8x^3 +12x^2 -48x +25 on interval [0,3]​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {3x}^{4} -  {8x}^{3} +  {12x}^{2} - 48x + 25

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx}( {3x}^{4} -  {8x}^{3} +  {12x}^{2} - 48x + 25 )

\rm :\longmapsto\:f'(x) = \dfrac{d}{dx}{3x}^{4} -  \dfrac{d}{dx}{8x}^{3} +  \dfrac{d}{dx}{12x}^{2} - \dfrac{d}{dx}48x + \dfrac{d}{dx}25

\rm :\longmapsto\:f'(x) = {12x}^{3} -  {24x}^{2} + 24x - 48

\rm :\longmapsto\:f'(x) = {12x}^{2}(x - 2) + 24(x - 2)

\rm :\longmapsto\:f'(x) = ({12x}^{2} + 24)(x - 2)

\rm :\longmapsto\:f'(x) = 12({x}^{2} + 2)(x - 2)

For maxima or minima,

\boxed{ \tt{ \: f'(x) = 0 \: }}

\rm :\longmapsto\:12( {x}^{2} + 2)(x - 2) = 0

\bf\implies \:x = 2

So, now calculate the value of f(x) at x = 0, 2, 3.

 \red{\rm :\longmapsto\:f(0) =  {0}^{4} -  {0}^{3} +  {0}^{2} - 0 + 25}

 \red{\bf\implies \:f(0) = 25}

Now,

 \green{\rm :\longmapsto\:f(2) =  {3(2)}^{4} -  {8(2)}^{3} +  {12(2)}^{2} - 48(2) + 25}

 \green{\rm \:  =  \:48 - 64 + 48 - 96 + 25}

 \green{\rm \:  =   - 39}

 \red{\bf\implies \:f(2) =  - 39}

Now,

 \blue{\rm :\longmapsto\:f(3) =  {3(3)}^{4} -  {8(3)}^{3} +  {12(3)}^{2} - 48(3) + 25}

 \blue{\rm \:  =  \:243 - 216 + 108 - 144 + 25}

 \blue{\rm \:  =  \:16}

 \blue{\bf\implies \:f(3) =  16}

So, of these, maximum value is f(0) = 25 and minimum value is f(2) = - 39.

Therefore,

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{Maximum \: value = 25 \: at \: x = 0} \\  \\ &\sf{Minimum \: value =  - 39 \: at \: x = 2} \end{cases}\end{gathered}\end{gathered}}

More to know :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions