Math, asked by samtara1388, 7 hours ago

Find center and radius of circle 3x^2+3y^2+2x+6y+11=0

Answers

Answered by senboni123456
0

Step-by-step explanation:

Given equation of circle

3 {x}^{2} + 3 {y}^{2}   + 2x + 6y + 11 = 0 \\

 \implies {x}^{2} +  {y}^{2}   +  \frac{2}{3} x + 2y +  \frac{11}{3} = 0 \\

Here,

g =  \frac{4}{3}  \: and \: f = 1 \\

So,

centre \equiv \bigg(  -  \frac{4}{3}, - 1\bigg) \\

radius =   \sqrt{  \bigg(  \frac{4}{3} \bigg)^{2}  + (1)^{2} +  \frac{11}{3}   }   \\

radius =   \sqrt{    \frac{16}{9} + 1+  \frac{11}{3}   }   \\

radius =   \sqrt{    \frac{16 + 9 + 33}{9}    }   \\

radius =   \sqrt{    \frac{58}{9}    }   \\

Similar questions