Math, asked by Anonymous, 7 months ago

Find CI on Rs 12600 for 2 years at 10% per annum compounded annually

Answers

Answered by sakshishiwal
4

Answer:

2520

Step-by-step explanation:

ci=prt/100

where,

p=12600

r=10%

t=2

put the value in formula

ci=12600×2×10/100

ci=2520

Answered by ItzMrBhoot
48

Solution:-

 \sf \bold{We \: have \: A = P(1 +  \frac{R}{100} {)}} \mathbb{^{n}  }  \\ \sf \small \red{\:Principal(P) =  12600 } \\  \sf \small \red{Rate(R) = 10\%} \\  \sf \small \red{Number \: of \: years} \mathbb \red{(n) } \sf \small \red{ = 2}

 \sf \orange{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 12600(1 +   \frac{10}{100} {)}^{2} = 12600( \frac{11}{10 }   {)}^{2}  }

 \sf \orange{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 12600 \times  \frac{11}{10} \times  \frac{11}{10} =   15246}

 \sf{CI =A  - P = 15246 - 12600 =2646}

More:-

 \sf \small{(i)Amount \: when \: interest \: is \: compunded annually}

 \sf  \small\orange{ = p( 1 + \frac{r}{100} {)}^{n}  }

 \sf \small{(i)Amount \: when \: interest \: is \: compounded \: half   \: yearly}

 \sf \small \orange{ = p(1 +  \frac{r}{200} {)}^{2n}  }

Similar questions