Math, asked by shivasri04, 10 months ago

Find CI on Rs. 5000 for 2 years at 10% p.a compounded half
yearly
a) 7001.5 RS
c) 1077.5 Rs d) none
b) 7011.5 RS​

Answers

Answered by mastermimd2
1

Step-by-step explanation:

PrincipalP==5000Rs

PrincipalP==5000RsCompond Rate per annum=10%

PrincipalP==5000RsCompond Rate per annum=10%Compound Rate half yearly=210=5%=r

PrincipalP==5000RsCompond Rate per annum=10%Compound Rate half yearly=210=5%=rTime=5.5yrs=5.5×2=11=n half years

PrincipalP==5000RsCompond Rate per annum=10%Compound Rate half yearly=210=5%=rTime=5.5yrs=5.5×2=11=n half yearsA=P×(1+100r)n

PrincipalP==5000RsCompond Rate per annum=10%Compound Rate half yearly=210=5%=rTime=5.5yrs=5.5×2=11=n half yearsA=P×(1+100r)nA=5000×(1+1005)11

PrincipalP==5000RsCompond Rate per annum=10%Compound Rate half yearly=210=5%=rTime=5.5yrs=5.5×2=11=n half yearsA=P×(1+100r)nA=5000×(1+1005)11A=5000×(1+(0.05))11

PrincipalP==5000RsCompond Rate per annum=10%Compound Rate half yearly=210=5%=rTime=5.5yrs=5.5×2=11=n half yearsA=P×(1+100r)nA=5000×(1+1005)11A=5000×(1+(0.05))11A=5000×(1.05)11

PrincipalP==5000RsCompond Rate per annum=10%Compound Rate half yearly=210=5%=rTime=5.5yrs=5.5×2=11=n half yearsA=P×(1+100r)nA=5000×(1+1005)11A=5000×(1+(0.05))11A=5000×(1.05)11A=5×1.71

PrincipalP==5000RsCompond Rate per annum=10%Compound Rate half yearly=210=5%=rTime=5.5yrs=5.5×2=11=n half yearsA=P×(1+100r)nA=5000×(1+1005)11A=5000×(1+(0.05))11A=5000×(1.05)11A=5×1.71A=8550Rs

PrincipalP==5000RsCompond Rate per annum=10%Compound Rate half yearly=210=5%=rTime=5.5yrs=5.5×2=11=n half yearsA=P×(1+100r)nA=5000×(1+1005)11A=5000×(1+(0.05))11A=5000×(1.05)11A=5×1.71A=8550RsCI=A−P=8550−5000=3550Rs

PrincipalP==5000RsCompond Rate per annum=10%Compound Rate half yearly=210=5%=rTime=5.5yrs=5.5×2=11=n half yearsA=P×(1+100r)nA=5000×(1+1005)11A=5000×(1+(0.05))11A=5000×(1.05)11A=5×1.71A=8550RsCI=A−P=8550−5000=3550RsHence the answer is 3550Rs

Answered by AllenGPhilip
2

Question

Find CI on Rs. 5000 for 2 years at 10% p.a compounded half yearly ?

Solution:

Let's find out the answer

We know,

  • \sf{ CI = p(1+i)^n-1}

Solution:

\sf{CI = 5,000(1 + \dfrac{10}{100})^4-1}

\sf{CI = 5,000(1+\dfrac{0.10}{2})^4-1}  \:\:\:\:(1+\dfrac{0.10}{2})^4 = 1.21550625

\sf{CI = 5000\:x\:0.21550625}

\red{\underline{\underline{\sf{CI = 1,078}}}}

Therefore,

CI = 1,078

Similar questions