Math, asked by Pavitr1, 1 year ago

Find compound interest
24000 for 1 year 146 days at 15/2%rate compounded annually ?

Answers

Answered by NehaKari
0

Given :

Principle (P) = Rs. 24000

Time (n) = 1 year 146 days

Rate (R) = \frac{15}{2}%

To Find :

Compound Interest

Solution :

Time (n) = 1 year  + 146 days

             = 365 days + 146 days

             = 511 days

             = \frac{511}{365}

             = 1.4 years

We know, Compound Interest (CI) = P[(1 + \frac{R}{100} )^{n} - 1]

or,                        CI  = 24000[(1 + \frac{15}{2 * 100})^{1.4} - 1]

or,                        CI  = 24000[(1 + \frac{7.5}{100} )^{1.4} - 1]

or,                        CI  = 24000[(1 + \frac{7.5}{100} ) ( 1 + \frac{7.5 * 0.4}{100} ) - 1]

or,                        CI  = 24000[(1.075)(1.03) - 1]

or,                        CI  = 24000[ 1.10725- 1]

or,                        CI  = 24000[0.10725]

or,                        CI  = 24000×0.10725

∴                          CI  = Rs. 2574

∴ Compound interest on Rs. 24000 for 1 year 146 days at \frac{15}{2} % rate compounded annually is Rs. 2574.

   

Answered by vinod04jangid
1

Answer:

$2574 .$

Step-by-step explanation:

Given: Principle (P) = Rs 24000, time$(n)=1$ year 146 days

Rate $(\mathrm{R})=\frac{15}{2} \%$

To Find : Compound Interest.

First convert time in years as:

Time $(n)=1$ year$+146$ days

             $$\begin{aligned}&=1 \text { years }+\frac{146}{365}  \text { years } \\&=1+0.4 \text { years} \\&=\mathbf{1 . 4} \text { years }\end{aligned}$$

Also, we know that compound Interest (CI) $=\mathrm{P}\left[\left(1+\frac{R}{100}\right)^{n}-1\right]$

$$\begin{aligned}&\mathrm{Cl}=24000\left[\left(1+\frac{15}{2 * 100}\right)^{1.4}-1\right] \\&\mathrm{Cl}=24000\left[\left(1+\frac{7.5}{100}\right)^{1.4}-1\right]\end{aligned}$$

$$\mathrm{Cl}=24000\left[\left(1+\frac{7.5}{100}\right)\left(1+\frac{7.5 * 0.4}{100}\right)-1\right]$$

$\mathrm{Cl}=24000[(1.075)(1.03)-1]$

$\mathrm{Cl}=24000[1.10725-1]$\\

Cl = Rs. 2574

Hence, compound interest on Rs. $\mathbf{2 4 0 0 0}$ for 1 year 146 days at $\frac{15}{2} \%$ rate compounded annually is Rs. $2574 .$

#SPJ2

Similar questions