Math, asked by neerajbansal00123, 7 months ago

Find conjugate and modulus of the (1+i)²/ (3-i).
please answer it guys urgent please give correct explanation​

Answers

Answered by udayagrawal49
5

Answer:

Conjugate of Z = -\frac{1}{5}-\frac{3}{5}i

Modulus of Z = \sqrt{\frac{2}{5}}

Step-by-step explanation:

Let Z = \frac{(1+i)^{2} }{(3-i)}

⇒ Z = \frac{(i^{2}+1^{2}+2i)}{(3-i)} = \frac{(-1+1+2i)}{(3-i)} = \frac{(2i)}{(3-i)}

On rationalizing R.H.S., we get

Z = \frac{(2i)(3+i)}{(3-i)(3+i)} = \frac{(6i+2i^{2})}{3^{2}-i^{2}}

or Z = \frac{(6i-2)}{9-(-1)} = \frac{(6i-2)}{9+1} = \frac{(6i-2)}{10} = \frac{6}{10}i-\frac{2}{10}

or Z = -\frac{1}{5}+\frac{3}{5}i

Conjugate of Z = -\frac{1}{5}-\frac{3}{5}i

⇒Modulus of Z = \sqrt{( -\frac{1}{5})^{2}+(\frac{3}{5})^{2}} = \sqrt{\frac{1}{25}+\frac{9}{25}} = \sqrt{\frac{1+9}{25}} = \sqrt{\frac{10}{25}}

or Modulus of Z = \sqrt{\frac{2}{5}}

Similar questions