Math, asked by Dhiyaanesh642, 10 months ago

Find conjugate of √-3 + 4i^2

Answers

Answered by shadowsabers03
26

We have to find the conjugate of \sf{\sqrt{-3}+4i^2.}

The conjugate of a complex number \sf{z=a+ib} is given by,

\longrightarrow\sf{\bar z=a-ib}

for \sf{a,\ b\in\mathbb{R}.}

But here,

\longrightarrow\sf{z=\sqrt{-3}+4i^2}

We have to make \sf{z} in \sf{a+ib} form.

We know that,

  • \sf{i=\sqrt{-1}}

  • \sf{i^2=-1}

Then,

\longrightarrow\sf{z=\sqrt{-1}\times\sqrt3+4\times-1}

\longrightarrow\sf{z=i\sqrt3-4}

\longrightarrow\sf{z=-4+i\sqrt3}

Therefore,

  • \sf{a=-4}

  • \sf{b=\sqrt3}

Hence the conjugate is,

\longrightarrow\sf{\underline{\underline{\bar z=-4-i\sqrt3}}}

Answered by ms8419133
8

Answer:

here , √-3 + 4i² = √3 x √i + 4 x (-1). ( i² = -1)

= √3i - 4= -4 + √3i

so, the conjugate of

-4 + √3i = -4 - √3i.

Similar questions