Math, asked by Joon111, 10 months ago

find conjugate of 3i-5/-2-i​

Answers

Answered by Anonymous
3

Given ,

3i - 5/-2 - i

On simplifying , we get

\sf \mapsto \frac{3i - 5}{ - 2 - i}  \times ( \frac{  - 2 + i}{ - 2 + i} ) \\  \\ \sf \mapsto \frac{ - 6i - 3 {(i)}^{2}  + 10 - 5i}{ { {( - 2)}^{2} - {( i)}^{2}   }}  \\  \\  \sf \mapsto\frac{ - 3( -1 ) - 11i + 10}{4 + 1} \:  \:  \:  \{ \because  {(i)}^{2}  =  - 1 \} \\  \\  \sf \mapsto \frac{7}{5}  -  \frac{11i}{5}

We know that , the conjugate of z is given by

 \boxed{ \sf \bar{z} = a - ib }

Thus ,

 \sf \mapsto  \bar{z} =  \frac{7}{5}  +  \frac{11i}{5}

Similar questions