Math, asked by tarun3539, 1 year ago

find continued product of (a-b)(a+b)(a^2+b^2)(a^4+b^4)​

Answers

Answered by PegasusPurpose
3

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\mathcal{\bf{\underline{\underline{\huge\mathcal{Answer}}}}}

\large\mathcal\red{......Formula\:: used....}

(x {}^{2}  - y {}^{2})  = (x + y)(x - y)

\large\mathcal\red{solution}

[(a - b)(a + b)](a {}^{2}  + b {}^{2} )(a {}^{4}  + b {}^{4} ) \\  = [(a {}^{2}  - b {}^{2} )(a {}^{2}  + b {}^{2} )](a {}^{4}  + b {}^{4} ) \\  = (a {}^{4}   - b {}^{4}) (a {}^{4}  + b {}^{4} ) \\  = (a {}^{8}  - b {}^{8} )

\large\mathcal\red{hope\: this \: helps \:you......}

Answered by sreedeviaddepal
0

Answer:

a^8-b^8

Step-by-step explanation:

(a-b)(a+b) =a^2-b^2

∴ (a^2-b^2)(a^2+b^2)=a^4-b^4

(a^4-b^4)(a^4+b^4)=a^8-b^8

Similar questions