Math, asked by anwarali25215, 4 months ago

Find coordinates of the foci, of the ellipse 4x2 +9y2 = 36.​

Answers

Answered by jayendramaster
1

zhrzelhdyeylbssdylttt

Answered by harshitha202034
0

4 {x}^{2}  + 9 {y}^{2}  = 36 \\ Divide \:  \:  equations  \:  \: by  \:  \: 36 \\  \frac{4 {x}^{2} }{36}  +  \frac{9 {y}^{2} }{36}  =  \frac{36}{36}  \\  \frac{ {x}^{2} }{9}  +  \frac{ {y}^{2} }{4}  = 1⟹⓵ \\  \frac{ {x}^{2} }{ {3}^{2} }  +  \frac{ {y}^{2} }{ {2}^{2} }  = 1 \\  \\ Since,  \:  \: 9>4 \\ Hence  \:  \: the \:  \:  above  \:  \: equation  \\  is  \:  \: of \:  \:  the \:  \:  form :  \\  \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  = 1⟹ ⓶\\ \\ Comparing  \:  \: ⓵ \:  \:  and \:  \:  ⓶ \\  {a}^{2}  = 9 \\ a =  \sqrt{9}  \\ a = 3 \\  \\  {b}^{2}  = 4 \\ b =  \sqrt{4}  \\ b = 2 \\  \\ We \:  \:  know  \:  \: that  \\ c =  \sqrt{ {a}^{2} -  {b}^{2}  }  \\  =  \sqrt{9 - 4}  \\  =  \sqrt{5}  \\  \\ Coordinates \:  \:  of \:  \:  foci \:  \:  are  :  \\ ( \sqrt{5} , \:  \: 0) \:  \: and \:  \: ( -  \sqrt{5} ,  \:  \: 0)

Similar questions