find cos^2 72-sin^2 54 =?
Answers
Answered by
149
cos 72 = sin(90-72) = sin 18 =
sin 54 = cos(90-54) = cos 36 =
Answered by
76
HELLO DEAR,
cos²72 = cos²(90 - 18) = sin²18 = (√5 - 1)/4
sin²54 = sin²(90 - 36) = cos²36 = (√5 + 1)/4
now, cos²72 - sin²54

![\bold{\implies \frac{1}{16} [(\sqrt{5} - 1)^2 - (\sqrt{5} + 1)^2]} \bold{\implies \frac{1}{16} [(\sqrt{5} - 1)^2 - (\sqrt{5} + 1)^2]}](https://tex.z-dn.net/?f=%5Cbold%7B%5Cimplies+%5Cfrac%7B1%7D%7B16%7D+%5B%28%5Csqrt%7B5%7D+-+1%29%5E2+-+%28%5Csqrt%7B5%7D+%2B+1%29%5E2%5D%7D)
![\bold{\implies \frac{1}{16}[\{\sqrt{5} - 1 - \sqrt{5} - 1\}\{\sqrt{5} - 1 + \sqrt{5} + 1\}]} \bold{\implies \frac{1}{16}[\{\sqrt{5} - 1 - \sqrt{5} - 1\}\{\sqrt{5} - 1 + \sqrt{5} + 1\}]}](https://tex.z-dn.net/?f=%5Cbold%7B%5Cimplies+%5Cfrac%7B1%7D%7B16%7D%5B%5C%7B%5Csqrt%7B5%7D+-+1+-+%5Csqrt%7B5%7D+-+1%5C%7D%5C%7B%5Csqrt%7B5%7D+-+1+%2B+%5Csqrt%7B5%7D+%2B+1%5C%7D%5D%7D)
![\bold{\implies \frac{1}{16}[\{-2*(2\sqrt{5})\}]} \bold{\implies \frac{1}{16}[\{-2*(2\sqrt{5})\}]}](https://tex.z-dn.net/?f=%5Cbold%7B%5Cimplies+%5Cfrac%7B1%7D%7B16%7D%5B%5C%7B-2%2A%282%5Csqrt%7B5%7D%29%5C%7D%5D%7D)

I HOPE IT'S HELP YOU DEAR,
THANKS
cos²72 = cos²(90 - 18) = sin²18 = (√5 - 1)/4
sin²54 = sin²(90 - 36) = cos²36 = (√5 + 1)/4
now, cos²72 - sin²54
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions