Math, asked by dimpli, 1 year ago

find cos^2 72-sin^2 54 =?

Answers

Answered by TPS
149

cos 72 = sin(90-72) = sin 18 = \frac{ \sqrt{5} -1}{4}

sin 54 = cos(90-54) = cos 36 =  \frac{ \sqrt{5} +1}{4}

cos^{2} 72 - sin^{2}54 \\ \\ =(\frac{ \sqrt{5}-1 }{4})^{2} - (\frac{ \sqrt{5}+1 }{4})^{2} \\ \\ =\frac{1}{16}[( \sqrt{5}-1 )^{2} - ( \sqrt{5}+1 )^{2} ] \\ \\ =\frac{1}{16} [-4* \sqrt{5}*1 ] \\ \\ =\frac{- \sqrt{5} }{4}
Answered by rohitkumargupta
76
HELLO DEAR,

cos²72 = cos²(90 - 18) = sin²18 = (√5 - 1)/4
sin²54 = sin²(90 - 36) = cos²36 = (√5 + 1)/4

now, cos²72 - sin²54

\bold{\implies \{\frac{\sqrt{5} - 1}{4}\}^2 - \{\frac{\sqrt{5} + 1}{4}\}^2 }

\bold{\implies \frac{1}{16} [(\sqrt{5} - 1)^2 - (\sqrt{5} + 1)^2]}

\bold{\implies \frac{1}{16}[\{\sqrt{5} - 1 - \sqrt{5} - 1\}\{\sqrt{5} - 1 + \sqrt{5} + 1\}]}

\bold{\implies \frac{1}{16}[\{-2*(2\sqrt{5})\}]}

\bold{\implies \frac{-\sqrt{5}}{4}}

I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions