Math, asked by hk78842299, 1 year ago


Find cos^4A - sin ^4A in terms of cos A​

Answers

Answered by shadowsabers03
3

\cos^4A-\sin^4A\\\\=(\cos^2A)^2-(\sin^2A)^2\\\\=(\cos^2A+\sin^2A)(\cos^2A-\sin^2A)\\\\=\cos^2A-\sin^2A\quad[\because\ \cos^2A+\sin^2A=1]\\\\=\cos^2A-(1-\cos^2A)\\\\=\cos^2A-1+\cos^2A\\\\=2\cos^2A-1\\\\=2\cos A\cdot\cos A-1

Answered by RvChaudharY50
16

\pink{\bold{\underline{\underline{Question:-}}}}

\large\red{\boxed{\sf \cos^{4}a  -  { \sin }^{4} a = ?}}

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\:Answer}}}}}}}}}}

we know That ,

\large\green{\boxed{\sf ( {x}^{2}  -  {y}^{2} ) = (x - y)(x + y)}}

\large\green{\boxed{\sf \sin^{2}x +  { \cos }^{2} y = 1}}

Using both Now we get,

 \cos^{4}a  -  { \sin }^{4} a \\  \\   \Rightarrow \: ( { \cos }^{2} a)^{2}  -  ({ \sin }^{2} a)^{2}  \\  \\ \Rightarrow ({ \cos }^{2} a + { \sin }^{2} a)({ \cos }^{2} a  -  { \sin }^{2} a) \\  \\ \Rightarrow \: 1 \times ({ \cos }^{2} a  -  { \sin }^{2} a) \:  \\  \\ \Rightarrow \: ({ \cos }^{2} a  - (1 - { \cos }^{2} a)) \\  \\ \Rightarrow \: ({ 2\cos }^{2} a  - 1)

\color {red}\large\bold\star\underline\mathcal{Extra\:Brainly\:Knowledge:-}

\boxed{\begin{minipage}{7 cm}Fundamental Trignometric Identities\\ \\ $\sin^2\theta+\cos^2\theta=1\\ \\ 1+\tan^2\theta=\sec^2\theta \\ \\ 1+\cot^2\theta=\text{cosec}^2 \, \theta$ \end{minipage}}

Similar questions