Math, asked by varyapratapsingh, 3 days ago

find cos2a and tan2a if sina= root 3/2, A lies in 2nd quadrant

Answers

Answered by bhamarepratibha176
0

Answer:

dhfshxkgxgxhfxjckhc

Step-by-step explanation:

oshfdgjckb

Answered by AvirupBanik001
1

Answer:

cos2a=-\frac{1}{2}

tan2a=\sqrt{3\\}

Step-by-step explanation:

sina=\frac{\sqrt{3} }{2} \\therefore, a = 120

Becuz a lies in 2nd quadrant

Now,

sin2a = 2sina*cosa

=2*sin(120)*cos(120)  \\= 2*\frac{\sqrt{3} }{2}*-\frac{1}{2}  \\= -\frac{\sqrt{3} }{2}

_____________________________

cos2a=(cosa)^{2} - (sina)^{2}\\= (-\frac{1}{2} )^{2} - (\frac{\sqrt{3} }{2} )^{2}\\= \frac{1}{4} - \frac{3}{4}     \\= - \frac{1}{2} (Ans)

_____________________________

tan2a= \frac{sin2a}{cos2a} \\=\frac{-\frac{\sqrt{3} }{2} }{-\frac{1}{2} } \\=\sqrt{3 } (Ans)

Similar questions