Math, asked by dpadmaja43091, 10 months ago

Find cosA, if 2sin²A+7cosA=5

Answers

Answered by tanisksaxena2020
0

Step-by-step explanation:

2 sin ^2A + 7 cos A = 5

7cos A = 5- 2 sin ^2A

cos A = (5 - 2 sin ^2A)/7

hope it helps you.........

Answered by alokik90
0

Answer:

We have,

2 {sin}^{2} a \:  +  \: 7cosa \:   =  \: 5

so, this implies,

2(1 - {cos}^{2} a) \:  +  \: 7 cosa \:  =  \: 5  \:  \:  \:  \:  \:  \:  \:  \:  \: (as \:  {sin}^{2} a \:  =  \: 1 -  {cos}^{2} a)

then,

2 - 2 {cos}^{2} a \:  +  \: 7cosa \:  -  \: 5 \:  =  \: 0

thus,

2 {cos}^{2} a \:  - 7cosa \:  +  \: 3 \:  =  \:  0

and, by middle term splitting,

2 {cos}^{2} a \:  - 6cosa \:  -  \: cosa \:  +  \: 3 \:  =  \: 0

so, we get,

2cosa(cosa \:   -  \: 3) \:  - 1(cosa \:  -  \: 3) \:  =  \: 0

and, it implies,

(cosa  \:  -  \: 3)(2cosa \:  -  \: 1) \:  =  \: 0

therefore,

either \: cosa \:  = \: 3 \: or \: cosa \:  =  \:  \frac{1}{2}

but, since

 - 1 \leqslant cosa \leqslant 1 \:

hence,

cosa \:  =  \:  \frac{1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (as \:  cosa \:  =  \: 3 \: not \: possible)

Similar questions