Find (cosA+sinA)^2+(cos A-Sin a)^2
a) -2
b) 2
c) 1
Answers
Answered by
2
Solution:
Solution:
(cos(a)+sin(a))^2+(cos(a)-sin(a))^2
=(cos(a)+sin(a))^2+(cos(a)-sin(a))^2
=(cos^2(a)+2cos(a)sin(a)+sin^2(a))+(cos(a)-sin(a))^2
=(1+2cos(a)sin(a))+(cos(a)-sin(a))^2
=1+2cos(a)sin(a)+(cos(a)-sin(a))^2
=1+2cos(a)sin(a)+(cos^2(a)-2cos(a)sin(a)+sin^2(a))
=1+2cos(a)sin(a)+(1-2cos(a)sin(a))
=2
The correct answer is b.
Hope it will help.
Solution:
(cos(a)+sin(a))^2+(cos(a)-sin(a))^2
=(cos(a)+sin(a))^2+(cos(a)-sin(a))^2
=(cos^2(a)+2cos(a)sin(a)+sin^2(a))+(cos(a)-sin(a))^2
=(1+2cos(a)sin(a))+(cos(a)-sin(a))^2
=1+2cos(a)sin(a)+(cos(a)-sin(a))^2
=1+2cos(a)sin(a)+(cos^2(a)-2cos(a)sin(a)+sin^2(a))
=1+2cos(a)sin(a)+(1-2cos(a)sin(a))
=2
The correct answer is b.
Hope it will help.
Answered by
13
Step-by-step explanation:
If θ be an acute angle, the values of sin θ and cos θ lies between 0 and 1 (both inclusive). The sine of the standard angles 0°, 30°, 45°, 60° ...
ur answer is -2
Similar questions