FIND. ..COSEC THETA ......
Sec THETA +tan theta =p
Answers
Answer:
cosecθ = (p² + 1)/(p² - 1)
Step-by-step explanation:
Given, Secθ + tanθ = p ------ (i)
∴ (secθ + tanθ)(secθ - tanθ) = 1
⇒ (p)(secθ - tanθ) = 1
⇒ secθ - tanθ = (1/p) ------ (ii)
On solving (i) & (ii), we get
secθ + tanθ = p
secθ - tanθ = 1/p
-------------------------
2secθ = (p² + 1)/p
secθ = (p² + 1)/2p
∴ cosθ = (1/secθ)
= 2p/p² + 1.
We know that sinθ = 1 - cosθ
= 1 - (2p)/p² + 1
= (p² + 1 - 2p)/(p² + 1)
= (p - 1)²/(p² + 1).
We know that cosecθ = 1/sinθ
= (p² + 1)/(p² - 1).
Therefore, cosecθ = (p² + 1)/(p² - 1).
Hope it helps!
Step-by-step explanation:
secθ+tanθ=p ----------------------(1)
∵, sec²θ-tan²θ=1
or, (secθ+tanθ)(secθ-tanθ)=1
or, secθ-tanθ=1/p ----------------(2)
Adding (1) and (2) we get,
2secθ=p+1/p
or, secθ=(p²+1)/2p
∴, cosθ=1/secθ=2p/(p²+1)
∴, sinθ=√(1-cos²θ)
=√[1-{2p/(p²+1)}²]
=√[1-4p²/(p²+1)²]
=√[{(p²+1)²-4p²}/(p²+1)²]
=√[(p⁴+2p²+1-4p²)/(p²+1)²]
=√(p⁴-2p²+1)/(p²+1)
=√(p²-1)²/(p²+1)
=(p²-1)/(p²+1)
∴, cosecθ=1/sinθ=1/[(p²-1)/(p²+1)]=(p²+1)/(p²-1)