Math, asked by subhasrikanth76, 1 year ago

Find cube root of 3*square root of 21 + 8 - cube root of 3*square root of 21- 8

Answers

Answered by amitnrw
11

Answer:

∛ (3 *√21  +  8)  -  ∛(3*√21 - 8) = 1

Step-by-step explanation:

Find cube root of 3*square root of 21 + 8 - cube root of 3*square root of 21- 8

x = ∛ (3 *√21  +  8)  -  ∛(3*√21 - 8)

Cubing both sides

x³ = (3 *√21  +  8)  - (3*√21 - 8)  - 3∛(189 - 64)(x)

x³ = 16 -  3∛125(x)

x³ = 16 - 15x

=> x³ + 15x - 16 = 0

=> (x - 1) (x² + x + 16) = 0

=> x = 1  or   x = complex number   (-1 ± i√63)/2

hence

∛ (3 *√21  +  8)  -  ∛(3*√21 - 8) = 1

Answered by mhanifa
3

Answer:

  • \sqrt[3]{3\sqrt{21} + 8} - \sqrt[3]{3\sqrt{21} - 8} = 1

Step-by-step explanation:

Given

  • \sqrt[3]{3\sqrt{21} + 8} - \sqrt[3]{3\sqrt{21} - 8}

To find

  • The value of the expression

Solution

Let the value is m and the expressions under 3rd roots are a and b, then we have

  • a = 3√21 + 8, b = 3√21 - 8
  • m = ∛a - ∛b

Cube the both sides:

  • m³ = (∛a - ∛b)³
  • m³ = a - b - 3\sqrt[3]{a^2b} + 3\sqrt[3]{ab^2}

Simplify in bits:

  • a - b = 3√21 + 8 - 3√21 + 8 = 16
  • ab = (3√21 + 8)(3√21 - 8) = 9*21 - 64 = 125
  • ∛ab = ∛125 = 5

So the expression becomes:

  • m³ = 16 - 3\sqrt[3]{125a} + \sqrt[3]{125b}
  • m³ = 16 - 15∛a + 15∛b
  • m³ = 16 - 15(∛a - ∛b)
  • m³ = 16 - 15m

Solve for m:

  • m³ + 15m - 16 = 0
  • m³ - 1 + 15m - 15 = 0
  • (m - 1)(m² + m + 1) + 15(m - 1) = 0
  • (m - 1)(m² + m + 16) = 0
  • m - 1 = 0, m² + m + 16 = 0
  • m = 1 is the only real root, the quadratic equation has no real roots

The answer is 1

Similar questions