Math, asked by Aravah, 2 months ago

Find Cube Root of:
i) 216
ii) 48228544
iii) 3^15 × 4^12 × 5^33​

Answers

Answered by sᴜɢᴀʀsᴜᴘ
186

Answer:

  1. 6
  2. 364
  3. 3^5 × 4^4 × 5^11

Step-by-step explanation:

i) 216

  • Make factors of 216

216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \\ 216 =  {2}^{3}  \times  {3}^{3}  \\   \sqrt[3]{216}  =  \sqrt[3]{ {2}^{3}  \times  {3}^{3} }  \\  = 2 \times 3 \\  \sqrt[3]{216}  = 6

_______________________

ii) 48228544

  • Make factors of 48228544.

48228544 =  \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \\ \underline{7 \times 7 \times 7}  \times \underline{13 \times 13 \times 13} \\  =  {2}^{3}  \times  {2}^{3}  \times  {7}^{3}  \times  {13}^{3 }  \\ 48228544 = (2 \times 2 \times 7 \times 13 )^{3}  \\  \sqrt[3]{48228544}  =  \sqrt[3]{(2 \times 2 \times 7 \times 13) ^{3} }  \\ =  2 \times 2 \times 7 \times 13 \\  \sqrt[3]{48228544}  = 364

_______________________

iii) 3^15 × 4^12 × 5^33

 {3}^{15}  \times  {4}^{12}  \times  {5}^{33} =  {(3 {}^{5} )}^{3}   \times  {(4 {}^{4} )}^{3}  \times  {(5 {}^{11} )}^{3}  \\ ( {3}^{5}  \times  {4}^{4}  \times  {5}^{11})^{3}  \\  \sqrt[3]{ {3}^{15}  \times  {4}^{12}  \times  {5}^{33} }  =  \sqrt[3]{{(3}^{5}  \times  {4}^{4}  \times  {5}^{11})^{3}}  \\ \sqrt[3]{ {3}^{15}  \times  {4}^{12}  \times  {5}^{33} } = {3}^{5}  \times  {4}^{4}  \times  {5}^{11}

_______________________

_______________________

Hope It Helps You

Answered by Anonymous
44

Answer:

³√216= ³√(2*2*2)*(3*3*3)=2*3=6

³√48228544=³√(2*2*2)*(2*2*2)*(7*7*7)*(13*13*13)=2*2*7*13= 364

3¹5*4¹²*5³³=(3'5)³*(4'4)³*(5¹¹)³=(3'5*4'4*5¹¹)³=³√3¹'5*4¹²*5³³=³√(3'5*4'4*5¹¹)

here=*=multiply

Similar questions