Math, asked by sahubholanath15, 6 days ago

Find cube root of unity and hence proved 1+w+w^=0

Answers

Answered by ramankartik12
1

Here is the attached solution of your problem.

Attachments:
Answered by mathdude500
6

Appropriate Question :-

Find the cube roots of unity and hence proved that

\rm \: 1 + \omega  +  {\omega }^{2} \:  =  \: 0  \\

\large\underline{\sf{Solution-}}

Let assume that

\rm \: x =  {\bigg( 1\bigg) }^{\dfrac{1}{3} }  \\

On cubing both sides, we get

\rm \:  {x}^{3}  = 1 \\

\rm \:  {x}^{3} - 1  = 0 \\

\rm \:  {x}^{3} -  {1}^{3}   = 0 \\

\rm \: (x - 1)( {x}^{2} + x + 1) = 0 \\

 \:  \:  \:  \: [ \:  \because \: \rm \:  {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2})] \\

\rm\implies \:x = 1 \\

or

\rm\implies \: {x}^{2}  + x + 1 = 0 \\

So, its a quadratic equation in x, so we have to use Quadratic Formula to get the values of x.

So, by using Quadratic formula,

\boxed{\sf{  \: \: x \:  =  \:  \frac{ -  \: b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}  \: }} \\

So, here

\rm \:\:  \:  \:  \:  \: a = 1 \\

\rm \:\:  \:  \:  \:  \: b = 1 \\

\rm \:\:  \:  \:  \:  \: c = 1 \\

So, on substituting the values, we get

\rm \: x \:  =  \: \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2}  - 4 \times 1 \times 1} }{2 \times 1}  \\

\rm \: x \:  =  \: \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 - 4} }{2}  \\

\rm \: x \:  =  \: \dfrac{ - 1 \:  \pm \:  \sqrt{- 3} }{2}  \\

\rm \: x \:  =  \: \dfrac{ - 1 \:  \pm \: i \sqrt{3} }{2}  \\

\rm \: x \:  =  \: \dfrac{ - 1 \:  -   \: i \sqrt{3} }{2}  \:  \: or \:  \: \: \dfrac{ - 1 \:   +  \: i \sqrt{3} }{2}  \\

\rm\implies \:x = \omega  \: or \:  \:  {\omega }^{2}  \\

where,

\rm \: \omega  = \: \dfrac{ - 1 \:   +  \: i \sqrt{3} }{2}  \\

and

\rm \:  {\omega }^{2}  = \: \dfrac{ - 1 \:    - \: i \sqrt{3} }{2}  \\

Hence, Cube roots of unity are

\rm\implies \:\boxed{\sf{  \: \: \rm \: {\bigg( 1\bigg) }^{\dfrac{1}{3} }   = 1, \: \omega , \:  {\omega }^{2}  \:  \: }}\\

Now, Consider

\rm \: 1 + \omega  +  {\omega }^{2}  \\

\rm \: =  \: 1 + \: \dfrac{ - 1 \:   +  \: i \sqrt{3} }{2}  + \: \dfrac{ - 1 \:  -   \: i \sqrt{3} }{2}  \\

\rm \: =  \: \: \dfrac{2 - 1 +  \sqrt{3} i - 1 \:  -   \: i \sqrt{3} }{2}  \\

\rm \: =  \: \dfrac{0}{2}  \\

\rm \: =  \: 0 \\

Hence,

\rm\implies \:\boxed{\sf{  \: \:  \: \rm \: 1 + \omega  +  {\omega }^{2} = 0   \:  \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\bf\: 1 +  {\omega }^{n}   +  {\omega }^{2n} =  \begin{cases} &\sf{0 \: if \: n \: is \: not \: a \: multiple \: of \: 3}  \\ \\ &\sf{3 \: if \: n \: is \: a \: multiple \: of \: 3} \end{cases}\end{gathered}\end{gathered} \\

\rm \:  {\omega }^{3}  = 1 \\

Similar questions