find cubic polynomial whose zeroes are 3,1/2,1
Answers
Answered by
5
EXPLANATION.
Cubic polynomial whose zeroes are = 3, 1/2, 1.
As we know that,
⇒ α = 3 and β = 1/2 and γ = 1
Sum of the zeroes of the cubic polynomial.
⇒ α + β + γ = -b/a.
⇒ 3 + 1/2 + 1.
⇒ 6 + 1 + 2/2 = 9/2.
⇒ α + β + γ = 9/2.
Products of zeroes of the cubic polynomial two at a time.
⇒ αβ + βγ + γα = c/a.
⇒ (3)(1/2) + (1/2)(1) + (1)(3).
⇒ 3/2 + 1/2 + 3.
⇒ 3 + 1 + 6/2 = 10/2 = 5.
Products of the zeroes of the cubic polynomial.
⇒ αβγ = -d/a.
⇒ (3)(1/2)(1) = 3/2.
Formula of the cubic polynomial.
⇒ x³ - (α + β + γ)x² + (αβ + βγ + γα)x - αβγ.
Put the values in the equation, we get.
⇒ x³ - (9/2)x² + (5)x - (3/2) = 0.
⇒ x³ - 9x²/2 + 5x - 3/2 = 0.
⇒ 2x³ - 9x² + 10x - 3 = 0.
Similar questions
English,
1 month ago
Math,
2 months ago
Social Sciences,
2 months ago
Math,
10 months ago
Geography,
10 months ago