Physics, asked by zahaansajid, 8 months ago

Find current through each branch
[Hint : Use Kirchhoff Voltage Law and Kirchhoff Junction Law]


Pls help me...


Attachments:

Answers

Answered by shadowsabers03
2

Let,

  • net current in the circuit \sf{=i.}

  • current through AB \sf{=i_{AB}.}

  • current through AD \sf{=i_{AD}.}

  • current through BC \sf{=i_{BC}.}

  • current through DC \sf{=i_{DC}.}

Applying Junction Law at A,

\longrightarrow\sf{i=i_{AB}+i_{AD}\quad\quad\dots(1)}

Applying Junction Law at B,

\longrightarrow\sf{i_{AB}=i_{BC}+i_{BD}\quad\qud\dots(2)}

Applying Junction Law at C,

\longrightarrow\sf{i_{BC}+i_{DC}=i\quad\quad\dots(3)}

Applying Junction Law at D,

\longrightarrow\sf{i_{AD}+i_{BD}=i_{DC}\quad\quad\dots(4)}

Applying Voltage Law in the loop EADCFE,

\longrightarrow\sf{10=10\,i+5\,i_{AD}+10\,i_{DC}\quad\quad\dots(5)}

Applying Voltage Law in the loop EADBCFE,

\longrightarrow\sf{10=10\,i+5\,i_{AD}-5\,i_{BD}+5\,i_{BC}\quad\quad\dots(6)}

Applying Voltage Law in the loop EABDCFE,

\longrightarrow\sf{10=10\,i+10\,i_{AB}+5\,i_{BD}+10\,i_{DC}\quad\quad\dots(7)}

Applying Voltage Law in the loop EABCFE,

\longrightarrow\sf{10=10\,i+10\,i_{AB}+5\,i_{BC}\quad\quad\dots(8)}

Substituting (1) and (3) in (5),

\longrightarrow\sf{10=10\,i+5\left(i-i_{AB}\right)+10\left(i-i_{BC}\right)}

\longrightarrow\sf{10=25\,i-5\,i_{AB}-10\,i_{BC}}

\longrightarrow\sf{2=5\,i-\left(\,i_{AB}+2\,i_{BC}\right)}

\longrightarrow\sf{\,i_{AB}+2\,i_{BC}=5\,i-2\quad\quad\dots(9)}

From (8),

\longrightarrow\sf{2\,i_{AB}+i_{BC}=2-2\,i\quad\quad\dots(10)}

Solving (9) and (10) we get,

\longrightarrow\sf{i_{BC}=4i-2\quad\quad\dots(11)}

From (10),

\longrightarrow\sf{i_{AB}=2-3i\quad\quad\dots(12)}

From (1),

\longrightarrow\sf{i_{AD}=4i-2\quad\quad\dots(13)}

From (3),

\longrightarrow\sf{i_{DC}=2-3i\quad\quad\dots(14)}

From (8),

\longrightarrow\sf{10=10\,i+10(2-3i)+5(4i-2)+10(2-3i)}

\longrightarrow\sf{10=30-30i}

\longrightarrow\underline{\underline{\sf{i=\dfrac{2}{3}\ A}}}

From (11) and (13),

\longrightarrow\underline{\underline{\sf{i_{AD}=i_{BC}=\dfrac{2}{3}\ A}}}

From (12) and (14),

\longrightarrow\underline{\underline{\sf{i_{AB}=i_{DC}=0\ A}}}

Attachments:
Answered by dineshagarwal4813
0

Answer:

answer the 55 mark me as brainlist

Similar questions