Math, asked by patilhimanshu1212, 5 hours ago

Find d^2y/dx^2 if,x= acos³ ϴ, y = b sin³ ϴat ϴ= pi/4

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = a \:  {cos}^{3}\theta

So,

\rm :\longmapsto\:\dfrac{d}{d\theta }x = a \:  \dfrac{d}{d\theta }{cos}^{3}\theta

\rm :\longmapsto\:\dfrac{dx}{d\theta } = a \:  \dfrac{d}{d\theta }{(cos\theta)}^{3}

\rm :\longmapsto\:\dfrac{dx}{d\theta } = 3a \:  {cos}^{2}\theta \dfrac{d}{d\theta }{(cos\theta)}

\rm :\longmapsto\:\dfrac{dx}{d\theta } = 3a \:  {cos}^{2}\theta( - sin\theta )

\rm :\longmapsto\:\dfrac{dx}{d\theta } =  - 3a {cos}^{2}\theta sin\theta  -  -  - (1)

Further, given that

\rm :\longmapsto\:y = b {sin}^{3}\theta

\rm :\longmapsto\:\dfrac{d}{d\theta }y = b \dfrac{d}{d\theta }{sin}^{3}\theta

\rm :\longmapsto\:\dfrac{dy}{d\theta } = b \dfrac{d}{d\theta }{(sin\theta )}^{3}

\rm :\longmapsto\:\dfrac{dy}{d\theta } = 3b  {sin}^{2}\theta \dfrac{d}{d\theta }{(sin\theta )}

\rm :\longmapsto\:\dfrac{dy}{d\theta } = 3b  {sin}^{2}\theta \: cos\theta

Therefore,

\rm :\longmapsto\:\dfrac{dy}{dx}

\rm \:  =  \: \dfrac{dy}{d\theta } \div \dfrac{dx}{d\theta }

\rm \:  =  \: \dfrac{3b {sin}^{2} \theta cos\theta }{ - 3a {cos}^{2} \theta sin\theta }

\rm \:  =  \:  - \dfrac{b}{a}tan\theta

\rm\implies \:\dfrac{dy}{dx} \: =  \:  - \:  \dfrac{b}{a} \: tan\theta

On differentiating both sides w. r. t. x, we get

\rm\implies \:\dfrac{d^{2} y}{d {x}^{2} } \: =  \:  - \:  \dfrac{b}{a} \:\dfrac{d}{dx} tan\theta

\rm \:  =  \:  - \dfrac{b}{a} {sec}^{2}\theta  \: \dfrac{d\theta }{dx}

\rm \:  =  \:  - \dfrac{b}{a} {sec}^{2}\theta  \: \times  \dfrac{1}{ - 3a {cos}^{2} \theta sin\theta }

\rm \:  =  \: \dfrac{b}{ 3{a}^{2} } \:  {sec}^{4}\theta \:  cosec\theta

Thus,

\rm\implies \:\dfrac{ {d}^{2} y}{d {x}^{2} } =  \: \dfrac{b}{ 3{a}^{2} } \:  {sec}^{4}\theta \:  cosec\theta

So,

\rm\implies \:\bigg(\dfrac{ {d}^{2} y}{d {x}^{2} }\bigg)_{\dfrac{\pi}{4} }=  \: \dfrac{b}{ 3{a}^{2} } \:  {sec}^{4}\dfrac{\pi}{4} \:  cosec\dfrac{\pi}{4}

\rm\implies \:\bigg(\dfrac{ {d}^{2} y}{d {x}^{2} }\bigg)_{\dfrac{\pi}{4} }=  \: \dfrac{b}{ 3{a}^{2} } \:  {( \sqrt{2} )}^{4} \times  \sqrt{2}

\rm\implies \:\bigg(\dfrac{ {d}^{2} y}{d {x}^{2} }\bigg)_{\dfrac{\pi}{4} }=  \: \dfrac{4 \sqrt{2} b}{ 3{a}^{2} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

\boxed{\tt{ \dfrac{d}{dx}cosx =  - sinx \: }}

\boxed{\tt{ \dfrac{d}{dx}sinx = cosx}}

\boxed{\tt{ \dfrac{d}{dx}tanx =  {sec}^{2} x}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions