find d^2y/dx^2,if √x+y +√y-x=c if any one think that he is much intelligent then solve it
Answers
sqrt(x+y) +sqrt(y-x) = c
squaring on both sides,
x+y + y-x + 2* sqrt((x+y)*(y-x)) = c2
x+y + y-x + 2* sqrt(y2 – x2) = c2
2*sqrt(y2 – x2) = c2 – 2y
squaring on both sides,
4(y2 – x2) = c4 + 4y2 – 4c2y
-4x2 = c4 – 4c2y
y = (c2/4)+ (x2)/c2
dy/dx = (2x)/c2
d2y/dx2 = 2/c2
Therefore the value of d²y/dx² is { ( 1/4 ) [ + dy/dx.( ) ] } / { [ 1 + ( 1/2 ) dy/dx ] }.
Given:
The equation: √x + y + √y - x = c
To Find:
The value of d²y / d²x.
Solution:
The given question can be easily solved as shown below.
Given equation: √x + y + √y - x = c
Differentiating with respect to 'x' on both sides,
⇒ d ( √x + y + √y - x ) / dx = dc / dx
⇒ d√x / dx + dy/dx + d√y/dx - dx/dx= dc/dx
[ d√x / dx = ( 1/2 ) ;
d√y/dx = ( 1/2 ) dy/dx;
dx/dx = 1;
dc/dx =0 ]
⇒ ( 1/2 ) + dy/dx + ( 1/2 ) dy/dx - 1 = 0
⇒ ( 1/2 ) + dy/dx + ( 1/2 ) dy/dx = 1
Now again differentiating with respect to 'x' in both sides,
⇒ d [( 1/2 ) + dy/dx + ( 1/2 ) dy/dx ] / dx = d1/dx
⇒ d( 1/2 ) /dx + d (dy/dx) / dx + d(( 1/2 ) dy/dx)/ dx = d1/dx
⇒ ( 1/2 ) d /dx + d (dy/dx) / dx + ( 1/2 ) d( dy/dx)/ dx = d1/dx
[ d /dx = -/2;
d( dy/dx)/ dx = dy/dx ( d /dx ) + ( d ( dy/dx ) / dx = dy/dx.( -/2 ) + dy/dx. d²y/dx²;
d (dy/dx) / dx = d²y/dx²;
d1/dx =0 ]
⇒ ( 1/2 ) -/2 + d²y/dx² + ( 1/2 ) dy/dx.( -/2 ) + ( 1/2 ) dy/dx. d²y/dx² = 0
Rearranging the terms,
⇒ d²y/dx² + ( 1/2 ) dy/dx. d²y/dx² + ( 1/2 ) -/2 + ( 1/2 ) dy/dx.( -/2 ) = 0
⇒ d²y/dx² [ 1 + ( 1/2 ) dy/dx ] - ( 1/4 ) [ + dy/dx.( ) ] = 0
⇒ d²y/dx² [ 1 + ( 1/2 ) dy/dx ] = ( 1/4 ) [ + dy/dx.( ) ]
⇒ d²y/dx² = { ( 1/4 ) [ + dy/dx.( ) ] } / { [ 1 + ( 1/2 ) dy/dx ] }
Therefore the value of d²y/dx² is { ( 1/4 ) [ + dy/dx.( ) ] } / { [ 1 + ( 1/2 ) dy/dx ] }.
#SPJ3