Math, asked by dhanush2274, 3 months ago

find d^2y/dx^2 if y=x^2/1+2x​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

y =  \frac{ {x}^{2} }{1 + 2x}  \\

Differentiating both sides w.r.t x, we have,

 \frac{dy}{dx}  =  \frac{2x(1 + 2x) - 2( {x}^{2}) }{(1 + 2x)^{2} } \\

 \implies \frac{dy}{dx}  =  \frac{2x + 4 {x}^{2}  - 2 {x}^{2} }{ {(1 + 2x)}^{2} }  \\

 \implies \frac{dy}{dx}  =  \frac{2x+ 2x^{2} }{ {(1 + 2x)}^{2} }  \\

 \implies \frac{ {d}^{2} y}{d {x}^{2} }  =  \frac{2(1 + 2x)(1  + 2x)^{2} - 8x(1 + 2x)(1 + x) }{ {(1 + 2x)}^{4} }  \\

 \implies \frac{ {d}^{2} y}{d {x}^{2} }  =  \frac{2(1 + 2x)((1 + 2x)^{2} - 4x(1 + x)) }{ {(1 + 2x)}^{4} }  \\

 \implies \frac{ {d}^{2} y}{d {x}^{2} }  =  \frac{2(1 + 4 {x}^{2} + 4x - 4x - 4 {x}^{2} ) }{ {(1 + 2x)}^{3} }  \\

 \implies \frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{2}{(1 + 2x) ^{3} } \\

Similar questions