Find d^2y/dx^2 when x=acost and y=bsint
Answers
EXPLANATION.
⇒ x = a cos(t) & y = b sin(t).
As we know that,
⇒ x = a cos(t).
Differentiate w.r.t t, we get.
⇒ dx/dt = a.(-sin (t)).
⇒ dx/dt = - a sin(t).
⇒ y = b sin(t).
Differentiate w.r.t t, we get.
⇒ dy/dt = b cos(t).
⇒ dy/dx = dy/dt X dx/dt.
⇒ dy/dx = b cos(t)/-a sin(t).
⇒ dy/dx = -b cot(t)/a.
Again differentiate w.r.t x, we get.
⇒ d²y/dx² = -b/a X (-cosec²t) dt/dx.
As we know that,
⇒ dx/dt = - a sin(t).
⇒ dt/dx = 1/- a sin(t).
⇒ d²y/dx² = -b/a X (-cosec²t).(1/- a sin(t)).
⇒ d²y/dx² = -b(cosec³t)/a².
MORE INFORMATION.
Differential coefficient of some standard function.
(1) = d(constant)/dx = 0.
(2) = d(ax)/dx = a.
(3) = d(xⁿ)dx = nxⁿ⁻¹.
(4) = d(eˣ)dx = eˣ.
(5) = d(aˣ)/dx = aˣ㏒(a).
(6) = d(㏒(x))/dx = 1/x.
(7) = d(㏒ₐx)/dx = 1/x㏒(a).
★ Given:-
- ☯ x = a cos t
- ☯ y = b sin t
★ To Find:-
- ☯
★ Solution:-
☯ First find and if we find we also
have to find and .
☯ Finding dx/dt,
☯ x = a cos t
➙ dx/dt = -a sin t.
☯ Finding dy/dt,
☯ y = b sin t
➙ dy/dt = b cos t.
☯ Finding dy/dx ,