Math, asked by tanviberi, 4 months ago

Find d^2y/dx^2 when x=acost and y=bsint​

Answers

Answered by amansharma264
20

EXPLANATION.

⇒ x = a cos(t)  &  y = b sin(t).

As we know that,

⇒ x = a cos(t).

Differentiate w.r.t t, we get.

⇒ dx/dt = a.(-sin (t)).

⇒ dx/dt = - a sin(t).

⇒ y = b sin(t).

Differentiate w.r.t t, we get.

⇒ dy/dt = b cos(t).

⇒ dy/dx = dy/dt X dx/dt.

⇒ dy/dx = b cos(t)/-a sin(t).

⇒ dy/dx = -b cot(t)/a.

Again differentiate w.r.t x, we get.

⇒ d²y/dx² = -b/a X (-cosec²t) dt/dx.

As we know that,

⇒ dx/dt = - a sin(t).

⇒ dt/dx = 1/- a sin(t).

⇒ d²y/dx² = -b/a X (-cosec²t).(1/- a sin(t)).

⇒ d²y/dx² = -b(cosec³t)/a².

                                                                                                                     

MORE INFORMATION.

Differential coefficient of some standard function.

(1) = d(constant)/dx = 0.

(2) = d(ax)/dx = a.

(3) = d(xⁿ)dx = nxⁿ⁻¹.

(4) = d(eˣ)dx = eˣ.

(5) = d(aˣ)/dx = aˣ㏒(a).

(6) = d(㏒(x))/dx = 1/x.

(7) = d(㏒ₐx)/dx = 1/x㏒(a).

Answered by TheBrainlyStar00001
149

Given:-

  • x = a cos t
  • y = b sin t

To Find:-

  •  \sf \dfrac{d  \: {}^{2} \:  y}{dx  \: {}^{2} }\\\\

Solution:-

☯ First find  \sf \dfrac{dy}{dx} and if we find  \sf \dfrac{dy}{dx} we also

have to find  \sf \dfrac{dx}{dt} and  \sf \dfrac{dy}{dt}.

Finding dx/dt,

x = a cos t

➙ dx/dt = -a sin t.

Finding dy/dt,

y = b sin t

➙ dy/dt = b cos t.

Finding dy/dx ,

 \implies \tt \dfrac{dy}{dx}  =  \:  \dfrac{dy}{dt}  \times   \dfrac{dt}{dx}  \:  =   \dfrac{b \: cos \: t}{ - a \: sin \: t}  \\\\    \implies\tt\dfrac{dy}{dt} =   \dfrac{ - b}{a} cot \: t \\\\    \tt \implies \dfrac{d {}^{2} y}{dx {}^{2} } =  \frac{ - b}{a} ( - cosec {}^{2} t). \frac{dt}{dx} \\\\ \implies\tt\frac{b}{a} (cosec {}^{2} t).(  \frac{1}{a \: sin \: t}  ) \\\\   \implies \tt\frac{d {}^{2}y }{dx {}^{2} }  =  \frac{ - b \: cosec {}^{3}t }{a {  }^{2} } .

Answer:-

\bf\dfrac{d {}^{2}y }{dx {}^{2} }  =  \dfrac{ - b \: cosec {}^{3}t }{a {  }^{2} } .\\\\

★ Hope it helps u ★

Similar questions